SevenCompact[™] S230

เครื่องวัดค่าการนำไฟฟ้า

ดู่มืออ้างอิง

สารบัญ

1	บทนํ	n	3	
2	ข้อมูลเพื่อความปลอดภัย			
	2.1	คำจำกัดความของข้อความเดือนและสัญลักษณ์เดือน	4	
	2.2	หมายเหตุด้านความปลอดภัยจำเพาะผลิตภัณฑ์	4	
3	การส	ออกแบบและฟังก์ชันการทำงาน	e	
	3.1	ภาพรวม	6	
	3.2	การเชื่อมต่อแผงด้านหลัง	7	
	3.3	จอแสดงผลและไอคอน	8	
	3.4	การควบคุมหลัก	ę	
	3.5	ซอฟต์คีย์	ę	
	3.6	ปุ่มกดตัวอักษรและตัวเลข	10	
		3.6.1 การป้อนตัวอักษรและตัวเลข	10	
		3.6.2 การแก้ไขค่าในตาราง	11	
	3.7	การนำทางภายในเมนู	11	
	3.8	การนำทางระหว่างเมนูต่าง ๆ	11	
4	การใ	ใช้งานจริง	12	
	4.1	ขอบเขตการส่งมอบ	12	
	4.2	การติดตั้งแขนอิเล็กโทรด uPlace™	12	
	4.3	การติดตั้งแหล่งจ่ายไฟ	14	
	4.4	การเชื่อมต่อเซ็นเซอร์	14	
	4.5	การเปิดและปิดเครื่องมือ	15	
	4.6	การเชื่อมต่อข้อมูล	15	
5	การค	ำำหนดค่าเครื่องมือ	16	
	5.1	รหัสตัวอย่าง	16	
	5.2	เลขประจำดัวผู้ใช้	17	
	5.3	การกวน	17	
	5.4	การจัดเก็บข้อมูล	17	
	5.5	การตั้งค่าระบบ	18	
		5.5.1 ภาษา	18	
		5.5.2 เวลาและวันที่	18	
		5.5.3 การควบคุมการเข้าใช้งาน	19	
		5.5.4 สัญญาณเสียง	19	
		5.5.5 โหมดผู้ปฏิบัติงาน	19	
		5.5.6 การตั้งค่าหน้าจอ	20	
	5.6	การบริการ	20	
	5.7	การทดสอบดัวเองของเครื่องมือ	21	
6	การว	มัดค่าการนำไฟฟ้า	22	
	6.1	การตั้งค่าการวัด	22	
		6.1.1 ID / SN ของเซ็นเซอร์	22	
		6.1.2 การตั้งค่าการสอบเทียบ	23	
		6.1.3 การตั้งค่าการวัด	24	
		6131 อณหภูมิอ้างอิง	24	

		6.1.3.2 การแก้ไขอุณหภูมิ/สัมประสิทธิ์อัลฟา	24
		6.1.3.3 แฟกเตอร์ TDS	25
		6.1.3.4 หน่วยการนำไฟฟ้า	25
		6.1.3.5 การนำไฟฟ้า Ash	26
		6.1.3.6 หน่วยความเค็ม	26
		6.1.4 ประเภทจุดยุติ	26
		6.1.5 การตั้งค่าอุณหภูมิ	27
		6.1.6 ขีดจำกัดการวัดค่า	27
	6.2	การสอบเทียบเซ็นเซอร์	27
	6.3	การวัดค่าตัวอย่าง	28
7	การจ	ู เดการข้อมูล	29
	7.1	ข้อมูลการวัดค่า	29
	7.2	ข้อมูลการสอบเทียบ	30
	7.3	ข้อมูล ISM	30
	7.4	อินเทอร์เฟซการถ่ายโอน	31
8	การเ	ำรุงรักษาและการดูแล	32
	8.1	การทำความสะอาดเครื่องมือ	32
	8.2	การขนส่งเครื่องมือ	32
	8.3	การกำจัด	33
9	การเ	เก้ไขปัญหา	34
	9.1	ข้อความแสดงข้อผิดพลาด	34
	9.2	ขีดจำกัดข้อผิดพลาดของการนำไฟฟ้า	36
10	เช็นเ	ซอร์ วิธีการแก้ปัญหา และอุปกรณ์	37
11	ข้อมู	ลทางเทคนิค	38
12	ภาคเ	มนวก	41
	12.1	มาตรฐานการนำไฟฟ้า	41
	12.2	แฟกเตอร์แก้ไขค่าอุณหภูมิ	42
	12.3	ค่าสัมประสิทธิ์อุณหภูมิ (ค่าอัลฟา)	44
	12.4	ระดับความเค็มที่ใช้จริง (UNESCO 1978)	44
	12.5	การนำไฟฟ้าต่อแฟกเตอร์การแปลง TDS	45
	12.6	ดาราง USP/EP	45
	12.7	วิธีการนำไฟฟ้า Ash"):	46
		12.7.1 น้ำตาลทำบริสุทธิ์ (28 ก./สารละลาย 100 ก.) ICUMSA GS2/3-17	46
		12.7.2 น้ำตาลดิบหรือกากน้ำตาล (5 ก. / สารละลายน้ำตาล100 มล.) ICUMSA GS	
		1/3/4/7/8-13	46

1 บทนำ

ขอขอบคุณที่เลือก METTLER TOLEDO SevenCompact™ S230 เครื่อง SevenCompact™ S230 เป็นเครื่องมือการ วัดค่าการนำไฟฟ้าที่ใช้งานง่าย

เกี่ยวกับเอกสารนี้

คำแนะนำในเอกสารนี้มีไว้สำหรับเครื่องวัดค่าการนำไฟฟ้าที่ใช้เฟิร์มแวร์เวอร์ชัน 2.01.03 ขึ้นไป หากคุณมีคำถามเพิ่มเดิม ให้ดิดต่อดัวแทนจำหน่ายหรือดัวแทนบริการที่ได้รับอนุญาตของ METTLER TOLEDO

www.mt.com/contact

สัญนิยมและสัญลักษณ์

อ้างอิงถึงเอกสารภายนอก

ประกาศ

สำหรับข้อมูลที่เป็นประโยชน์เกี่ยวกับผลิตภัณฑ์

องค์ประกอบของคำแนะนำ

- สิ่งที่ต้องเตรียมล่วงหน้า
- 1 ขั้นตอน
- 2 ...
 - ⇔ ผลลัพธ์ที่เกิดขึ้นระหว่างทาง
- ⇔ ผลลัพธ์

2 ข้อมูลเพื่อความปลอดภัย

- คู่มืออ้างอิงนี้มีคำอธิบายที่ครบถ้วนเกี่ยวกับเครื่องมือและการใช้งาน
- เก็บรักษาคู่มืออ้างอิงนี้ไว้ใช้อ้างอิงในอนาคต
- ให้คู่มืออ้างอิงนี้แนบไปด้วยหากคุณส่งต่อเครื่องมือนี้ให้ผู้อื่น

ใช้เครื่องมือให้สอดคล้องกับคู่มืออ้างอิงเท่านั้น หากไม่ได้ใช้งานเครื่องมือโดยสอดคล้องตามคู่มืออ้างอิงนี้หรือ หากมีการดัดแปลงแก้ไขเครื่องมือ การรักษาความปลอดภัยของเครื่องมืออาจเสื่อมคุณภาพลง และ Mettler-Toledo GmbH จะไม่รับผิดต่อการใช้งานผิดประเภทนี้

2.1 คำจำกัดความของข้อความเดือนและสัญลักษณ์เตือน

หมายเหตุด้านความปลอดภัยมีข้อมูลที่สำคัญเกี่ยวกับปัญหาด้านความปลอดภัย การไม่สนใจต่อหมายเหตุเพื่อ ความปลอดภัยอาจนำไปสู่การบาดเจ็บทางร่างกาย ความเสียหายต่อเครื่องมือ การทำงานผิดปกติ และผลลัพธ์ที่ ผิดพลาดได้ หมายเหตุด้านความปลอดภัย จะมีข้อความเดือนและสัญลักษณ์เดือนต่อไปนี้กำกับไว้

ข้อความเตือน

คำเดือน	สถานการณ์ ที่เป็นอันตราย โดย มีความเสี่ยงระดับ ปานกลาง อาจ ทำให้เกิด การบาดเจ็บ รุนแรงหรือ ถึงขั้นเสียชีวิต ได้หาก ไม่หลีกเลี่ยง
ประกาศ	สถานการณ์ที่เป็นอันตราย โดยมีความเสี่ยงระดับต่ำ อาจทำให้เกิดความเสียหายต่อ เครื่องมือ ความเสียหายต่อสิ่งของอื่น การทำงานผิดปกติและผลข้อมูลผิดพลาด หรือ การสูญเสียข้อมูลได้

สัญลักษณ์เตือน

2.2 หมายเหตุด้านความปลอดภัยจำเพาะผลิตภัณฑ์

วัตถุประสงค์การใช้งาน

เครื่องมือนี้ได้รับการออกแบบมาให้ใช้งานโดยผู้ที่ได้รับการฝึกอบรมมาเท่านั้น SevenCompact™ S230 มี วัตถุประสงค์เพื่อใช้ในการวัดค่าการนำไฟฟ้า

การใช้งานและการควบคุมการทำงานที่เกินขีดจำกัดการใช้งานที่ Mettler-Toledo GmbH ระบุ โดยไม่ได้รับ อนุญาตจาก Mettler-Toledo GmbH ถือเป็นการใช้งานที่ไม่ตรงตามวัตถุประสงค์

หน้าที่รับผิดชอบของเจ้าของเครื่องมือ

เจ้าของเครื่องมือเป็นบุคคลที่ครอบครองกรรมสิทธิ์ในเครื่องมือ และเป็นผู้ใช้เครื่องมือหรือมีสิทธิอนุญาตให้ บุคคลอื่นใดใช้เครื่องมือ หรือผู้ที่มีสิทธิ์ตามกฎหมายให้เป็นผู้ควบคุมการทำงานของเครื่องมือ เจ้าของเครื่องมือ มีหน้าที่ดูแลความปลอดภัยของผู้ใช้และบุคคลที่สามทั้งหมดที่ใช้เครื่องมือ

METTLER TOLEDO ถือว่าเจ้าของเครื่องมือทำการฝึกอบรมผู้ใช้ให้ใช้เครื่องมือในสถานที่ทำงานอย่างปลอดภัย และรับมือกับอันตรายที่เกิดขึ้นได้แล้ว METTLER TOLEDO ถือว่าเจ้าของเครื่องมือได้จัดเตรียมอุปกรณ์ป้องกันที่ จำเป็นไว้เรียบร้อยแล้ว

หมายเหตุเพื่อความปลอดภัย

\land คำเตือน

อาจบาดเจ็บรุนแรงหรือถึงแก่ชีวิตได้หากถูกไฟฟ้าดูด!

การสัมผัสกับขึ้นส่วนที่มีกระแสไฟไหลผ่านอาจนำไปสู่การเสียชีวิตหรือการบาดเจ็บได้

- 1 ใช้อะแดปเตอร์ AC ของ METTLER TOLEDO ที่ออกแบบมาสำหรับใช้กับเครื่องมือเท่านั้น
- 2 เก็บสายไฟและขั้วต่อทางไฟฟ้าทั้งหมดให้ห่างจากของเหลวและความชื้น
- 3 ตรวจสอบสายเคเบิลและปลั๊กว่ามีการชำรุดเสียหายหรือไม่ และเปลี่ยนสายเคเบิลและ ปลั๊กใหม่หากมีร่องรอยชำรุดเสียหาย

ประกาศ

อาจมีความเสี่ยงที่จะเกิดความเสียหายกับเครื่องมือได้หากใช้ชิ้นส่วนไม่ถูก ต้อง!

การใช้ขึ้นส่วนที่ ไม่เหมาะสม กับ เครื่องมือ สามารถ ทำให้เครื่องมือ เสียหาย หรือ ทำให้เครื่อง มือ ทำงานผิดปกติ ได้

ใช้ชิ้นส่วนจาก METTLER TOLEDO ที่มีวัตถุประสงค์เพื่อใช้งานกับเครื่องมือของคุณเท่านั้น

3 การออกแบบและฟังก์ชันการทำงาน

3.1 ภาพรวม

หมายเลข	ปุ่ม	กดและปล่อย	กดค้างไว้ 2 วินาที
1	On	เปิดเครื่อง	ปิดเครื่อง
2	ส่วนแสดงผล		
3	ซอฟต์คีย์	ฟังก์ชั้นของซอฟต์คีย์จะแต	กต่างกันไปตามหน้าจอ
4	Read	 เริ่มหรือสิ้นสุดการวัด (หน้าจอวัดค่า) ยืนยันข้อมูลหรือเริ่ม แก้ไขตาราง ออกจากเมนูและกลับ ไปยังหน้าจอวัดค่า 	สลับระหว่างหน้าจอแสดง เฉพาะข้อมูลวัดค่าเป็นหน้า จอแสดงข้อมูลแบบเต็ม
5	Cal	เริ่มการปรับเทียบ	ตรวจสอบข้อมูลการปรับ เทียบล่าสุด

3.2 การเชื่อมต่อแผงด้านหลัง

1	ซ็อกเก็ตดิจิตอลสำหรับดิจิตอลอิเล็กโทรด	2	อินเตอร์เฟซ RS232 (เครื่องพิมพ์)
3	ช่องระบบจ่ายไฟ DC	4	ช่อง Mini-DIN สำหรับอินพุตสัญญาณการนำ ไฟฟ้า
5	ช่อง Mini DIN สำหรับแท่งกวน METTLER TOLEDO	6	อินเทอร์เฟซ USB-B
7	อินเทอร์เฟซ USB-A		-

การกำหนดรหัส PIN สำหรับอินเตอร์เฟซ RS-232 เครื่องพิมพ์ METTLER TOLEDO เช่น RS-P25 สามารถเชื่อมต่อ กับอินเตอร์เฟซนี้

NC	Pin 6	NC
TxD (out)	Pin 7	NC
RxD (in)	Pin 8	NC
NC	Pin 9	NC
RSGND		

3.3 จอแสดงผลและไอคอน

มีสองโหมดที่สามารถใช้ได้สำหรับการแสดงผล։ หน้าจอแบบเต็มรูปแบบที่แสดงข้อมูลทั้งหมด และหน้าจอการ วัดค่าแบบถ่ายใกล้ uFocus™ ซึ่งแสดงข้อมูลการวัดค่าด้วยตัวอักษรขนาดใหญ่ หากต้องการสลับระหว่างมุมมอง เหล่านี้ ให้กด Read ค้างไว้ระหว่างการวัดค่า หลังการวัดค่า หรือก่อนการวัดค่า

	ไอคอน	คำอธิบาย
1	E	เชื่อมด่อ PC แล้ว (สำหรับ EasyDirect pH)
2	&#č F'V	ค่าจากการวัดค่าและหน่วยการวัดค่าที่ใช้
3	24-06-2018	วันที่และเวลา
	10:34	
4	25°C	อุณหภูมิการวัดค่า
5	MTC	ค่าแก้ไขอุณหภูมิ
		ATC: เชื่อมต่อเซ็นเซอร์อุณหภูมิแล้ว
		MTC: ไม่มีหรือไม่พบเซ็นเซอร์อุณหภูมิที่เชื่อมต่อ
6	ΛÂ	ชนิดจุดยุติ
		A: จุดยุติอัตโนมัติ; การวัดค่าหยุดทำงานโดยอัตโนมัติเมื่อสัญญาณเสถียร
		M: จุดยุติแบบมือ ; เพื่อหยุดการวัดค่าแบบแมนนวล
		Iี: จุดยุติแบบเวลา ⊭ การวัดค่าหยุดทำงานหลังจากช่วงเวลาที่กำหนดไว้
		สัญญาณค่าคงท ี่ จะปรากฏขึ้นหากสัญญาณเสถียร
7	Q	หมายเลข ID ผู้ใช้
8	М	จำนวนชุดข้อมูลในหน่วยความจำ
9	ſ	เช็นเชอร์ ID
10	4	หมายเลข ID ตัวอย่าง
11	л I	กลุ่มบัฟเฟอร์หรือมาตรฐาน
12	CC	ค่าคงที่ของเซลล์ของเซ็นเซอร์ตรวจวัดการนำไฟฟ้า

	ไอคอน	คำอธิบาย
13	Ref.T.	อุณหภูมิอ้างอิง
14	ISM	เชื่อมด่อเซ็นเซอร์ ISM [®] แล้ว
15		ซอฟต์คีย์เป็นปุ่มที่มีฟังก์ชันเปลี่ยนแปลงขึ้นอยู่กับบริบท
16		ดู [ซอฟด์คีย์ ▶ หน้า 9]
17		
18		

3.4 การควบคุมหลัก

ปุ่ม	กดและปล่อย	กดค้างไว้ 2 วินาที
On Off	เปิดเครื่อง	ปิดเครื่อง
Read	 เริ่มต้นหรือยุติการวัดค่า (หน้าจอการวัด ค่า) ยืนยันการป้อนข้อมูลหรือเริ่มต้นแก้ไข ดาราง ออกจากเมนูและกลับไปยังหน้าจอการ วัดค่า 	สลับไปมาระหว่างหน้าจอการวัดค่าแบบ ถ่ายใกล้และหน้าจอข้อมูลเด็มรูปแบบ
Cal	เริ่มการสอบเทียบ	ตรวจสอบข้อมูลการสอบเทียบล่าสุด
Softkeys	ฟังก์ขันการทำงานของซอฟต์คีย์แตกต่าง กันไปในแด่ละหน้าจอ	

3.5 ชอฟต์คีย์

เครื่องวัดค่ามีซอฟต์คีย์สึ่ปุ่ม พึงก์ชันการทำงานที่กำหนดไว้เปลี่ยนไปในระหว่างการดำเนินงานโดยขึ้นอยู่กับการ ใช้งาน การกำหนดการใช้งานจะแสดงที่บรรทัดล่างของหน้าจอ

3.6 ปุ่มกดตัวอักษรและตัวเลข

3.6.1 การป้อนตัวอักษรและตัวเลข

เครื่องวัดค่ามีแผงปุ่มกดหน้าจอสำหรับ ID, SN และ PIN รายการนี้สามารถป้อนได้ทั้งตัวเลขและตัวอักษร เมื่อ ป้อน PIN ตัวอักษรแต่ละตัวจะแสดงเป็น (*)

ใส่หมายเลข ID ด้วอย่าง					
1 2	3 4 5 6 7 8 9 0 _				
QW	ERTYUIOP				
A S	D F G H J K L « »				
ZX	C V B N M Delete OK				
🚯 กด 'Read' เพื่อยืนยัน					
ออก	• • •				

- l ย้ายดำแหน่งเคอร์เซอร์โดยใช้ 🗢 🗩 หรือปุ่ม 📕
- 2 กด **Read** เพื่อยืนยันการป้อน
 - 🗢 ดำแหน่งของตัวอักษรถัดไปที่จะป้อนกระพริบ
- 3 ทำซ้าขั้นตอนเหล่านี้เพื่อป้อนตัวอักษรเพิ่มเติม

- หรือ -

หากต้องการลบการป้อน ให้เลือกตัวอักษร นำทางไปยัง**ลบ** และกด **Read**

- 4 หากต้องการยืนยันและบันทึกการป้อน ไปยัง **OK**และกด **Read**
 - หรือ -

หากต้องการปฏิเสธการป้อน กด **ออก**

การป้อน ID / PIN

ซอฟต์คีย์สี่ปุ่มและปุ่ม **Read**จะใช้สำหรับการนำทางบนแป้นพิมพ์และการป้อน ID / PIN

ข้อความตัวอย่าง: น้ำ

- ถ้าไฮไลต์ที่ 1ให้กด 💶 หนึ่งครั้ง
 - 🗢 ไฮไลต์ที่ **Q**
- 2 กด 🗩 หนึ่งครั้ง
 - ⇔ ไฮไลต์ที่ W
- 3 กด **Read** เพื่อเข้า**W**
- 4 เปลี่ยนตำแหน่งรายการเลือกเป็น A, T, Eและ Rยืนยันตัวเลือกแต่ละตัวด้วย Read
- 5 เปลี่ยนดำแหน่งรายการเลือกเป็น **OK**, และกด **Read** เพื่อบันทึก ID

ประกาศ

 คุณยังสามารถใช้แป้นพิมพ์ USB หรือชุดสแกนบาร์โค้ด USB แทนการป้อน ID ด้วยแผงปุ่มกดที่เป็นด้วอักษร และตัวเลขได้ ในกรณีที่มีการป้อนหรือสแกนอักขระที่ไม่สามารถใช้ได้บนแป้นพิมพ์ของเครื่องมือ การป้อนดัง กล่าวจะแสดงเป็นเส้นใต้อักขระ (_)

3.6.2 การแก้ไขค่าในตาราง

เครื่องวัดค่าช่วยให้คุณสามารถป้อน แก้ไข หรือลบค่าในตารางได้ (ดัวอย่างเช่น ค่าอุณหภูมิและบัฟเฟอร์สำหรับ บัฟเฟอร์ที่กำหนดเอง) สามารถทำได้โดยใช้ซอฟต์คีย์เพื่อนำทางจากเซลล์หนึ่งไปยังเซลล์หนึ่ง

- 1 กด Read เพื่อเริ่มแก้ไขเซลล์ในตาราง
 - 🖙 ซอฟต์คีย์ที่เกี่ยวข้องกับการเปลี่ยนแปลงการแสดงผล
- 2 กด 🛨 และ 🗕 เพื่อป้อนค่า และกด **Read** เพื่อยืนยัน
 - 🖙 ซอฟต์คีย์เปลี่ยนกลับเป็น 🚹 และ 👎
- 3 นำทางไปยังเซลล์ และกด ลบ เพื่อนำค่าออก
- 4 หากต้องการจบการแก้ไขตาราง นำทางด้วย 📩 และ 💶 เพื่อไฮไลต์ Save
- 5 กด **Read** เพื่อยืนยันการดำเนินการและออกจากเมนู

3.7 การนำทางภายในเมนู

- กด ตั้งค่า เพื่อเข้าสู่การตั้งค่า
- 2 เลื่อนตัวเลือกไปที่รายการเมนูโดยใช้ปุ่ม <u>ร</u>หรือ <u>ร</u>และกด เลือก เพื่อเปิดตัวเลือก
- 3 ใช้การตั้งค่าที่จำเป็นโดยใช้ปุ่มนำทาง
 หรือ -
 - ย้ายตัวเลือกไปยังรายการเมนูถัดไปในลำดับชั้นโดยใช้ปุ่ม 🚹 หรือ 👎 ตามความเหมาะสม
- 4 กด **ออก** เพื่อกลับไปยังหน้าจอเมนูก่อนหน้า หรือกด **Read** เพื่อกลับไปยังหน้าจอการวัดค่าโดยตรง

3.8 การนำทางระหว่างเมนูต่าง ๆ

การแสดงผลของเครื่องวัดค่าประกอบด้วยกรอบการวัดค่า ซอฟต์คีย์ ส่วนต่าง ๆ สำหรับสถานะของไอคอน และ ส่วนเมนูที่ซ่อนอยู่เบื้องหลัง หากต้องการเข้าถึงส่วนเมนู และเพื่อนำทางระหว่างเมนูต่าง ๆ ให้ใช้ซอฟต์คีย์

- กด ตั้งค่า เพื่อเข้าสู่การตั้งค่า
- 2 ย้ายตัวเลือกไปด้านบนของหน้าจอเพื่อเลือกแท็บโดยใช้ปุ่ม 🚹 หรือ 💶
 - 🗢 มีการแสดงปุ่มนำทางเพื่อนำทางไปทางซ้ายและขวา
- 3 ย้ายตัวเลือกเพื่อเลือกแท็บอื่นโดยใช้ปุ่ม 💶 หรือ 💶
- 4 กด **ออก** เพื่อกลับสู่หน้าจอการวัดค่า

4 การใช้งานจริง

4.1 ขอบเขตการส่งมอบ

เปิดกล่องบรรจุและตรวจสอบความครบถ้วนของรายการที่ได้รับ เก็บใบรับรองการปรับเทียบไว้ในที่ที่ปลอดภัย SevenCompact™ จัดส่งพร้อมกับ:

- แขนอิเล็กโทรด uPlace™
- เซ็นเซอร์ (เวอร์ชันชุดเท่านั้น)
- อะแดปเตอร์ AC รวม
- ฝาครอบป้องกันแบบโปร่งใส
- CD-ROM พร้อมคู่มืออ้างอิงและคู่มือผู้ใช้ (เป็นภาษาอังกฤษ ภาษาเยอรมัน ภาษาฝรั่งเศส ภาษาอิตาลี ภาษา สเปน ภาษาโปรตุเกส ภาษาโปแลนด์ ภาษารัสเซีย ภาษาจีน ภาษาญี่ปุ่น ภาษาเกาหลี และภาษาไทย)
- คู่มือผู้ใช้ (เวอร์ชันพิมพ์เป็นภาษาอังกฤษ ภาษาเยอรมัน ภาษาฝรั่งเศส ภาษาอิตาลี ภาษาสเปน ภาษา โปรตุเกส ภาษาโปแลนด์)
- เอกสารแสดงการปฏิบัติตามมาตรฐาน
- ใบรับรองการปรับเทียบ

4.2 การติดตั้งแขนอิเล็กโทรด uPlace™

แขนอิเล็กโทรดสามารถใช้ในการใช้งานแบบแยกอิสระ หรือติดอยู่กับเครื่องมือทางด้านซ้ายหรือขวาตามการ ตั้งค่าของคุณ ความสูงของแขนอิเล็กโทรดอาจแตก ด่างกันตามการใช้ส่วนแกนที่ต่อขยาย ใช้สกรูเพื่อติด ส่วนต่อขยาย

ส่วนประกอบของแขนอิเล็กโทรด

 ใช้สกรูเพื่อดิดฐานไว้กับแขนอิเล็กโทรดโดยการ ขันสกรูให้แน่น ในตอนนี้สามารถนำแขนอิเล็กโท รดมาใช้ในโหมดแยกอิสระได้

 แล้วใส่ส่วนฐานของเครื่องวัดค่าลงในฐานแขนและ เปลี่ยนเครื่องวัดค่าในทิศทางลูกศรเพื่อให้ฐานเข้า ในที่

3 ใช้สกรูล็อกเพื่อติดเครื่องวัดค่าไว้กับฐานของแขน

4.3 การติดตั้งแหล่งจ่ายไฟ

\land คำเดือน

อาจบาดเจ็บรุนแรงหรือถึงแก่ชีวิตได้หากถูกไฟฟ้าดูด!

การสัมผัสกับชิ้นส่วนที่มีกระแสไฟไหลผ่านอาจนำไปสู่การเสียชีวิตหรือการบาดเจ็บได้

- 1 ใช้อะแดปเตอร์ AC ของ METTLER TOLEDO ที่ออกแบบมาสำหรับใช้กับเครื่องมือเท่านั้น
- 2 เก็บสายไฟและขั้วต่อทางไฟฟ้าทั้งหมดให้ห่างจากของเหลวและความชื้น
- 3 ตรวจสอบสายเคเบิลและปลั๊กว่ามีการชำรุดเสียหายหรือไม่ และเปลี่ยนสายเคเบิลและ ปลั๊กใหม่หากมีร่องรอยชำรุดเสียหาย

ประกาศ

อันตรายจากความเสียหายต่ออะแดปเตอร์ AC เนื่องจากความร้อนจัด! หากอะแดปเตอร์ AC มีสิ่งปกคลุมหรืออยู่ในภาชนะ ก็จะทำให้เย็นลงได้ไม่เพียงพอและเกิด ความร้อนจัด

- ห้ามนำสิ่งของมาปกคลุมอะแดปเตอร์ AC
- 2 ห้ามวางอะอแดปเตอร์ AC ไว้ในภาชนะ

เครื่องมือทำงานโดยใช้อะแดปเตอร์ AC อะแดปเตอร์ AC เหมาะสำหรับทุกแรงดันไฟฟ้าหลักในช่วง 100-240 V AC ±10% และ 50-60 Hz

- เสียบปลั๊กขั้วต่อที่ถูกต้องเข้าไปในอะแดปเตอร์ AC จนกว่าจะ สุด
- 2 เชื่อมต่อสายเคเบิลของอะแดปเตอร์ AC โดยใช้ช่อง DC ของ เครื่องมือ
- 3 ติดตั้งสายเคเบิลอย่างถูกต้อง เพื่อป้องกันไม่ให้ได้รับความ เสียหาย หรือเพื่อไม่ให้กีดขวางการทำงาน
- 4 เสียบปลั๊กของอะแดปเตอร์ AC เข้ากับเด้าเสียบไฟฟ้าที่เข้าใช้ งานได้ง่าย

ในการถอดปลั๊กขั้วต่อออก ให้กดปุ่มปลดและดึงปลั๊กขั้วต่อออก

4.4 การเชื่อมต่อเช็นเชอร์

เมื่อเชื่อมต่อเซ็นเซอร์ ให้ตรวจสอบให้แน่ใจว่าเสียบปลั๊กถูกต้องแล้ว ถ้าคุณกำลังใช้เซ็นเซอร์ที่มีหัววัดอุณหภูมิ ในตัวหรือหัววัดอุณหภูมิแยกต่างหาก ให้เชื่อมต่อสายเคเบิลที่สองกับช่อง ATC

ตัวอย่าง

 เชื่อมต่อเซ็นเซอร์ pH เข้ากับปลั๊ก BNC และหากมีหัวตรวจวัดอุณหภูมิ ให้เชื่อมต่อปลั๊ก RAC (สายรัด) เข้ากับ ดัวรับ ATC

ISM® เซ็นเชอร์

เมื่อเชื่อมต่อเซ็นเซอร์ ISM® เข้ากับเครื่องวัดค่า ต้องเป็นไปตามหนึ่งในเงื่อนไขต่อไปนี้ ข้อมูลการสอบเทียบจึง จะสามารถโอนโดยอัตโนมัติจากชิปของเซ็นเซอร์ไปที่เครื่องวัดค่าและใช้สำหรับการวัดค่าในอนาคต หลังจาก ติดเซ็นเซอร์ ISM®

- ต้องเปิดเครื่องวัดค่าแล้ว
- (หากเครื่องวัดค่เปิดอยู่แล้ว) กดปุ่ม READ

• (หากเครื่องวัดค่เปิดอยู่แล้ว) กดปุ่ม CAL

เราแนะนำเป็นอย่างยิ่งให้ปิดเครื่องวัดค่าเมื่อปลดการเชื่อมต่อกับเซ็นเซอร์ ISM การทำเช่นนี้ก็เพื่อให้แน่ใจว่า ไม่มีการนำเซ็นเซอร์ออกขณะที่เครื่องมืออ่านหรือบันทึกข้อมูลไปยังชิป ISM ของเซ็นเซอร์

ไอคอน**ISM <u>ISM</u>ปรากฏขึ้นบนหน้าจอและ ID ของเซ็นเซอร์และชิปของเซ็นเซอร์ได้รับการลงทะเบียนไว้แล้วและ** ปรากฏบนหน้าจอ

ประวัดิการสอบเทียบ ใบรับรองเบื้องดันและอุณหภูมิสูงสุดสามารถนำมาตรวจสอบและพิมพ์ในหน่วยความจำ ข้อมูลได้

4.5 การเปิดและปิดเครื่องมือ

การเปิดเครื่อง

- กดและปล่อย On/Off เพื่อเปิดเครื่องมือ
 - ⇒ รุ่นเฟิร์มแวร์ หมายเลขผลิตภัณฑ์ และวันที่ปัจจุบัน จะแสดงขึ้นสองสามวินาที จากนั้นอุปกรณ์จะพร้อม สำหรับการใช้งาน

การปิดสวิตช์

กดปุ่ม On/Off ค้างไว้จนเครื่องมือสลับไปที่โหมดสแตนด์บาย

ประกาศ

 ในโหมดสแตนด์บาย มีไฟเลี้ยงวงจรควบคุมสำหรับสวิตช์ On/Off ส่วนอื่น ๆ ของเครื่องมือที่เหลือจะไม่มีไฟ เลี้ยง

4.6 การเชื่อมต่อข้อมูล

ด้วยขีดความสามารถ Plug & Play ทำให้สามารถตรวจพบแฟลชไดรฟ์ USB เครื่องอ่านบาร์โค้ด และเครื่องพิมพ์ ได้โดยอัตโนมัติ

การเชื่อมต่อ	ใข้
อินเดอร์เฟซ RS232	เครื่องพิมพ์ RS
อินเดอร์เฟซ USB B	EasyDirect pH ซอฟด์แวร์เครื่องพีชี
อินเตอร์เฟซ USB A	เครื่องพิมพ์ USB เครื่องอ่านบาร์โค้ด USB
	แฟลชไดรฟ์ USB ที่มีรูปแบบไฟล์ FAT12/FAT16/FAT32

เครื่องมือปรับ baud rate ตามการตั้งค่าต่อไปนี้ในกรณีที่ไม่มีการประสานเวลา baud rate โดยอัตโนมัติ (เฉพาะ ประเภทเครื่องพิมพ์**RS-P25, RS-P26, RS-P28**):

baud rate เครื่องพิมพ์:	1200
Data bits:	8
Parity:	ไม่มี
Stop bits:	1
Handshake:	ไม่มี

5 การกำหนดค่าเครื่องมือ

1.	หมายเลข ID ตัวอย่าง	5.	ตั้งค่าระบบ
	 ใส่หมายเลข ID ตัวอย่าง 		1. ภาษา
	2. ตามลำดับอัตโนมัติ		2. เวลาและวันที่
	3. เลือกตัวอย่าง ID		3. การควบคุมการเข้าใช้งาน
	4. ลบดัวอย่าง ID		4. เสียงเดือน
2.	หมายเลข ID ผู้ใช้		5. หมวดทำงานปกติ/ขั้นสูง
	 ใส่หมายเลข ID ผู้ใช้ 		6. ตั้งค่าหน้าจอ
	2. เลือกรหัสผู้ใข้	6.	บริการ
	3. ลบรหัสผู้ใข้		 อัพเดตซอฟด์แวร์
3.	เครื่องกวน		2. ย้ายการตั้งค่าเข้า USB
	 กวนก่อนวัดค่า 		3. การตั้งค่าตามโรงงาน
	2. กวนขณะวัดค่า	7.	ทดสอบอุปกรณ์เอง
	3. ความเร็วการกวน		
	4. การตั้งค่าไฟฟ้าเครื่องกวน		
4.	การเก็บข้อมูล		
	1. โมดการเก็บ		
	2. ที่หมายการเก็บ		
	3. อ่านค่าตามช่วงเวลา		
	4. รูปแบบการพิมพ์		

5.1 รหัสด้วอย่าง

การนำทาง: ตั้งค่า > ่⊮ี่ > หมายเลข ID ตัวอย่าง

พารามิเตอร์	ลักษณะ	ค่า
ใส่หมายเลข ID ตัวอย่าง	สามารถป้อน ID ด้วอย่างที่เป็นตัวอักษรและด้วเลขรวมกันสูงสุดได้ 16 อักขระ	116 อักขระ
	สามารถจัดเก็บ ID ตัวอย่างไว้ในหน่วยความจำ และแสดงให้เลือก ในรายการได้สูงสุด 10 ID หากจำนวน ID ที่จัดเก็บไว้ถึงจำนวน สูงสุด เครื่องวัดจะแสดงข้อความ ห น่วยความจำเด็ม	
ตามลำดับ อัดโนมัติ	เปิด : การใช้การตั้งค่านี้จะเป็นการเพิ่ม ID ตัวอย่างทีละ 1 สำหรับ การอ่านค่าแต่ละครั้ง หากอักขระตัวสุดท้ายของ ID ตัวอย่างไม่ใช่ ตัวเลข ในกรณีนี้จะเพิ่มเลข 1 ไปที่ ID ตัวอย่างซึ่งมีตัวอย่างที่สอง โดยที่ ID ตัวอย่างจะต้องไม่เกิน 16 อักขระ ป ิด : ID ตัวอย่างจะไม่เพิ่มขึ้นโดยอัตโนมัดิ	เปิด ปิด
เลือกตัวอย่าง ID	หากต้องการเลือก ID ด้วอย่างจากรายการของ ID ด้วอย่างที่ป้อน แล้ว	รายการ ID ตัวอย่างที่ ใช้ได้
ลบตัวอย่าง ID	หากต้องการลบ ID ตัวอย่างที่มีอยู่ออกจากรายการ ให้เลือก ID ตัวอย่างที่คุณต้องการลบและกด Read	รายการ ID ตัวอย่างที่ ใช้ได้

5.2 เลขประจำตัวผู้ใช้

การนำทาง: ตั้งค่า > 🕼 > หมายเลข ID ผู้ใช้

พารามิเตอร์	ลักษณะ	ค่า
ใส่หมายเลข ID ผู้ ใช้	สามารถป้อน ID ผู้ใช้แบบตัวอักษรและตัวเลขรวมกันสูงสุดได้ 16 อักขระ สามารถจัดเก็บ ID ผู้ใช้ไว้ในหน่วยความจำ และแสดงให้ เลือกในรายการได้สูงสุด 10 ID หากจำนวน ID ที่จัดเก็บไว้ถึง จำนวนสูงสุด เครื่องวัดจะแสดงข้อความ หน่ วยความจำเต็ม	116 อักขระ
เลือกรหัสผู้ใช้	หากต้องการเลือกผู้ใช้ที่ไม่อยู่รายชื่อของผู้ใช้ที่มีอยู่เดิม	รายการ ID ผู้ใช้ที่ใช้ได้
ลบรหัสผู้ใช้	หากต้องการลบ ID ผู้ใช้ที่มีอยู่ออกจากรายการ ให้เลือก ID ผู้ใช้ที่ คุณต้องการลบและกด Read	รายการ ID ผู้ใช้ที่ใช้ได้

5.3 การกวน

้คุณสามารถเชื่อมต่อ METTLER TOLEDO แท่งกวนแม่เหล็กภายนอกกับเครื่องมือ แท่งกวนนี้ได้รับพลังงานไฟฟ้า จากเครื่องมือและจะเปิด/ปิดได้โดยอัตโนมัติดามการตั้งค่า

ถ้าแท่งกวน uMix หรือ Compact มีการเชื่อมต่อกับสัญญาณออกของแท่งกวน จะสามารถเลือกตัวเลือก **กวน** ขณะวัดค่าหรือ กวนก่อนวัดค่าได้ เมื่อมีการใช้งานแท่งกวน จะปรากฏสัญลักษณ์ 🌄

พารามิเตอร์	ลักษณะ	ค่า
กวนก่อนวัดค่า	เ ปิด : การใช้การตั้งค่านี้จะรวมระยะเวลาการกวนก่อนเริ่มการวัด (หลังจากที่กด Read)	เปิด ปิด
	ป ิด : ไม่มีการกวนก่อนที่จะมีการวัดค่า	
ป้อนเวลา	กำหนดระยะเวลาในการกวน [s] ถ้าเปิดใช้งาน กวนก่อนวัดค่า	360
กวนขณะวัดค่า	เ ปิด : การใช้การตั้งค่านี้จะส่งผลให้เกิดการกวนในช่วงการวัดค่า เมื่อการวัดค่ายุติลง แท่งกวนจะปิดการทำงานโดยอัตโนมัติ	เปิด ปิด
	ปิด : ไม่มีการกวนระหว่างการวัดค่า	
ความเร็วการกวน	กำหนดความเร็วในการกวนในขั้นตอนด่าง ๆ ตามการความพึงใจ และคุณลักษณะของตัวอย่าง	15
การตั้งค่าไฟฟ้า	กำหนดแรงดันไฟฟ้าต่ำสุดและสูงสุดสำหรับเครื่องกวน	0.58.0 V
เครื่องกวน	ความเร็วการกวน I : กำหนดแรงดันไฟฟ้าสำหรับความเร็วการ กวนต่ำสุด	
	ความเร็วการกวน 5 : กำหนดแรงดันไฟฟ้าสำหรับความเร็วการ กวนสูงสุด	

การนำทาง: ตั้งค่า > 🔓 > เครื่องกวน

5.4 การจัดเก็บข้อมูล

ตัวเลือกเมนู: ตั้งค่า > 🕼 > การเก็บข้อมูล

เครื่องมือวัดค่าสามารถเก็บชุดข้อมูลการวัดค่าในหน่วยความจำได้สูงสุด 1000 รายการ จำนวนชุดข้อมูลที่จัด เก็บในหน่วยความจำจะระบุเป็น MXXXX บนส่วนแสดงผล จะมีข้อความปรากฏขึ้นบนส่วนแสดงผลเมื่อหน่วยความ จำเต็ม หากต้องการบันทึกการวัดค่าเมื่อหน่วยความจำเต็ม จะต้องลบข้อมูลออกก่อน คุณสามารถเลือกได้ ระหว่างพื้นที่จัดเก็บแบบอัตโนมัติและแมนนวล กด **ออก** เพื่อละทิ้งค่าที่อ่านได้เมื่อสิ้นสุด

พารามิเตอร์	ลักษณะ	ค่า
โมดการเก็บ	เก็บข้อมูลอัตโนมัต ิ: เก็บ/ถ่ายโอนค่าที่อ่านได้ที่พบทั้งหมดไปยัง หน่วยความจำ/อินเตอร์เฟซหรือทั้งสองอย่างโดยอัตโนมัติ	เก็บข้อมูลอัตโนมัติ เก็บเข้าหน่วยความจำ
	เก็บเข้าหน่วยความจำเอง : ถ้าเลือก บันทึก จะปรากฏบนจอแส ดงผลทันทีที่การวัดค่าพบจุดยุติ กด บันทึก เพื่อบันทึกหรือถ่าย โอนการอ่านค่าจุดยุติ การอ่านค่าสามารถเก็บได้ครั้งเดียวเท่านั้น เมื่อเก็บข้อมูลแล้ว บันทึก จะหายไปจากหน้าจอการวัดค่า	เอง
ที่หมายการเก็บ	เลือกเพื่อถ่ายโอนข้อมูลไปยังหน่วยความจำ เครื่องพิมพ์ หรือ คอมพิวเตอร์ PC	หน่วยความจำ เครื่องพิมพ์
	หน่วยความจำ: ข้อมูลจะเก็บไว้ในหน่วยความจำภายในของ เครื่องมือ	คอมพิวเตอร์ PC
	เครื่องพิมพ ์: ข้อมูลจะพิมพ์ไปยังเครื่องพิมพ์ที่เชื่อมต่อ	
	คอมพิวเตอร์ PC : ข้อมูลจะถ่ายโอนไปยังเครื่องพีซีที่เชื่อมต่อที่ ใช้งาน EasyDirect pH	
อ่าน ค่าตาม ช่วง เวลา	เปิดใช้งานฟังก์ชันการทำงานเพื่อวัดค่าในการวัดในช่วงเวลาต่าง ๆ	เปิด ปิด
	การวัดจะหยุดตามรูปแบบจุดสิ้นสุดที่เลือกไว้ หรือด้วยตัวเองโดย การกด Read	
ช่วงเวลาที่ตั้ง	ระบุช่วงเวลาระหว่างจุดที่วัดค่าใน [s] หาก อ่านค่าตามช่วง เวลา เปิดใช้งาน	13600

5.5 การตั้งค่าระบบ

5.5.1 ภาษา

การนำทาง: ตั้งค่า > 🕼 > ตั้งค่าระบบ > ภาษา

พารามิเตอร์	ลักษณะ	ค่า
ภาษา	ระบุภาษาในการใช้งานเครื่องมือ	อังกฤษ เยอรมัน ฝรั่งเศส อิตาลี สเปน โปรดุเกส รัสเซีย โปแลนด์ จีน เกาหลี ญี่ปุ่น ไทย ตุรกี

5.5.2 เวลาและวันที่

การนำทาง: ตั้งค่า > 🕼 > ตั้งค่าระบบ > เวลาและวันที่

เมื่อเริ่มใช้งานเครื่องมือวัดในครั้งแรก หน้าจอป้อนเวลาและวันที่จะแสดงขึ้นโดยอัตโนมัติ

พารามิเตอร์	ลักษณะ	ค่า
เวลา	กำหนดเวลาและรูปแบบเวลาสำหรับการใช้งานเครื่องมือ	12 ชม. 24 ชม.
	รูปแบบ 24 ชั่วโมง (เช่น 06:56 และ 18:56)	
	รูปแบบ 12 ชั่วโมง (เช่น 06:56 AM และ 06:56 PM)	

เวลาและวันที่	กำหนดวันที่และรูปแบบวันที่สำหรับการใช้งานเครื่องมือ	รายการของรูปแบบวันที่
	วันที่	ที่สามารถใช้ได้
	28-11-20xx (วัน-เดือน-ปี)	
	11-28-20xx (เดือน-วัน-ปี)	
	28-Nov-20xx (วัน-เดือน-ปี)	
	28/11/20xx (วันเดือนปี)	

5.5.3 การควบคุมการเข้าใช้งาน

การนำทาง: ตั้งค่า > 🕼 > ตั้งค่าระบบ > การควบคุมการเข้าใช้งาน

สามารถป้อน PIN ได้สูงสุด 6 ตัวอักษร ในการตั้งค่าเริ่มต้นจากโรงงาน จะตั้ง PIN สำหรับการลบข้อมูลเป็น 000000 และเปิดใช้งาน โดยจะไม่มีการตั้งค่ารหัสผ่านในการเข้าสู่ระบบของเครื่องมือ

พารามิเตอร์	ลักษณะ	ค่า
ดั้งค่าระบบ	วิธีการเปิดใช้งานการป้องกัน PIN สำหรับการควบคุมการเข้าถึงที่ กำหนด เมื่อเลือกแล้ว หน้าด่างสำหรับการป้อน PIN ที่เป็นตัว อักษรและตัวเลขจะปรากฏขึ้น	16 อักขระ
ลบข้อมูล	กำหนดว่ามีการป้องกันการลบด้วย PIN หรือไม่	เปิด ปิด
เข้าใช้งานเครื่อง มือ	กำหนดว่ามีการป้องกันการเข้าสู่ระบบของเครื่องมือด้วย PIN หรือ ไม่	เปิด ปิด

5.5.4 สัญญาณเสียง

การนำทาง: ตั้งค่า > 🕼 > ตั้งค่าระบบ > เสียงเตือน

พารามิเตอร์	ลักษณะ	ค่า
เสียงเตือน	กำหนดว่าควรเปิดใช้งานสัญญาณเสียงหรือไม่	ปุ่มกด เสียงเตือน
		ข้อความ การวัดจุดยุติ

5.5.5 โหมดผู้ปฏิบัติงาน

การนำทาง: ตั้งค่า > ม็γิ > ตั้งค่าระบบ > หมวดทำงานปกติ/ขั้นสูง

แนวคิดของโหมดการทำงานสองโหมดคือคุณลักษณะ GLP ที่ทำให้มั่นใจว่าการตั้งค่าที่สำคัญและข้อมูลที่เก็บ ไว้ไม่สามารถลบได้ ไม่สามารถเปลี่ยนแปลงได้โดยไม่ได้ตั้งใจ ภายใต้เงื่อนไขการทำงานประจำวัน เครื่องวัดค่ายยอมให้ใช้ฟังก์ชันการทำงานต่อไปนี้เท่านั้นในโหมดงานประจำวัน:

- การสอบเทียบและการวัดค่า
- การแก้ไขผู้ใช้ ID ตัวอย่าง และ ID เซนเซอร์
- การแก้ไขอุณหภูมิ MTC
- การแก้ไขการตั้งค่าการถ่ายโอนข้อมูล
- การแก้ไขการตั้งค่าระบบ (ป้องกันด้วย PIN)
- เรียกใช้การทดสอบตัวเองของเครื่องมือ
- การจัดเก็บ การดู การพิมพ์ และการส่งออกข้อมูล
- การส่งออกการตั้งค่าไปยังแฟลชไดรฟ์ USB

พารามิเตอร์	ลักษณะ	ค่า
หมวดทำงาน ปกติ/ขั้นสูง	หมวดทำงานปกติ: เมนูการตั้งค่าบางส่วนจะใช้ไม่ได้ หมวดทำงานขั้นสูง: การตั้งค่าเริ่มต้นจากโรงงาน จะเปิดใช้งาน ฟังก์ขันทั้งหมดของเครื่องมือวัด	หมวดทำงานปกติ หมวดทำงานขั้นสูง

5.5.6 การตั้งค่าหน้าจอ

การนำทาง: ตั้งค่า > 🔐 > ตั้งค่าระบบ > ตั้งค่าหน้าจอ

พารามิเตอร์	ลักษณะ	ค่า
ความสว่างหน้า จอ	กำหนดความสว่างหน้าจอ	116
พักหน้าจอ	กำหนดว่าควรใช้เป็นโปรแกรมรักษาหน้าจอหรือไม่	เปิด ปิด
ช่วงเวลาที่ตั้ง	กำหนดว่าระบบควรรอนานเท่าใดในหน่วย [นาที] หลังจากการ ดำเนินการล่าสุดของผู้ใช้บนเครื่องคอมพิวเตอร์ก่อนเปิดใช้งาน โปรแกรมรักษาหน้าจอ	599
สีหน้าจอ	กำหนดสีพื้นหลังในการแสดงผล	ฟ้า เทา แดง เขียว

5.6 การบริการ

การนำทาง: ตั้งค่า > 🖞 > บริการ > อัพเดตชอฟต์แวร์

ประกาศ

อันตรายจากการสูญเสียข้อมูลเนื่องจากการรีเซ็ต!

เมื่อดำเนินการอัปเดตซอฟต์แวร์ การตั้งค่าทุกรายการจะกลับเป็นค่าเริ่มต้นและข้อมูลทั้งหมด จะถูกลบออก

คุณสามารถดำเนินการอัปเดตซอฟต์แวร์ได้โดยใช้แฟลชไดรฟ์ USB

- ตรวจสอบให้แน่ใจว่าเฟิร์มแวร์อยู่ในไดเรกทอรีรากของแฟลชไดรฟ์ USB และมีชื่อว่า S<xxx>v<yyy>.bin
 โดยที่ <xxx> เป็นหมายเลขของประเภทเครื่องมือ และ <yyy> เป็นหมายเลขรุ่น
- เชื่อมต่อแฟลชไดรฟ์ USB กับเครื่องมือ
- 2 เลือกตัวเลือก อัพเดดชอฟต์แวร์
 - 🗢 ข้อความจะปรากฏเพื่อบอกว่ากำลังดำเนินการอัปเดตซอฟต์แวร์
- 3 เมื่อการอัปเดตซอฟต์แวร์เสร็จสมบูรณ์ คุณจะต้องรีสตาร์ทเครื่องมือเพื่อให้การเปลี่ยนแปลงมีผล

ประกาศ

- เครื่องมือจะคืนค่ากลับไปเป็นการตั้งค่าจากโรงงาน ข้อมูลทั้งหมดจะถูกลบ และ PIN จะถูกตั้งกลับไปเป็น "000000"
- ถ้าแฟลชไดรฟ์ USB ถูกลบออกในระหว่างขั้นตอนการอัปเดตหรือไฟดับ เครื่องมือจะไม่ทำงานอีกต่อไป โปรดติดต่อ METTLER TOLEDO แผนกบริการเพื่อขอรับความช่วยเหลือเพิ่มเติม

ย้ายการตั้งค่าเข้า USB

คุณสามารถส่งออกการตั้งค่าได้ด้วยคุณลักษณะการทำงานนี้ ตัวอย่างเช่น ส่งผ่านทางอีเมลไปที่ METTLER TOLEDO บริการ

- 1 ใส่แฟลชไดรฟ์ USB ลงในอินเตอร์เฟซที่สอดคล้องกันของเครื่องวัด
 - 🖙 🦞 จะปรากฏบนหน้าจอแสดงผล

- 2 เลือก **ย้ายการตั้งค่าเข้า USB**ในเมนูบริการเพื่อเริ่มการถ่ายโอนข้อมูล
- ➡ เครื่องมือได้สร้างโฟลเดอร์ใหม่บนแฟลชไดรฟ์ USB ที่มีชื่อตรงกับวันที่ในรูปแบบสากล วันที่ "25 "พฤศจิกายน 2016" กลายเป็น "20161125"
- ๘ ไฟล์ที่ส่งออกอยู่ในรูปแบบข้อความ (นามสกุล .txt) ชื่อไฟล์ประกอบด้วยเวลาในรูปแบบ 24 ชม. (ชม. นาที วินาที) ที่มีคำเดิมหน้าเป็น S เวลา "15:12:25 (3:12:25 pm)" กลายเป็น "S151225.txt"

ประกาศ

การกด ออกระหว่างการส่งออกจะเป็นการยกเลิกกระบวนการ

การตั้งค่าตามโรงงาน

	/

ประกาศ

อันตรายจากการสูญเสียข้อมูลเนื่องจากการรีเซ็ต!

เมื่อดำเนินการรีเซ็ตเป็นค่าที่ตั้งจากโรงงาน การตั้งค่าทุกรายการจะคืนค่ากลับเป็นค่าเริ่มต้น และข้อมูลทั้งหมดจะถูกลบออก

- ไ เลือกตัวเลือก การตั้งค่าตามโรงงาน
 - ⇒ กล่องโต้ตอบปรากฏขึ้น
- 2 กด ใช่ เพื่อยืนยันกระบวนการ
- ⇒ เครื่องมือได้คืนค่ากลับไปเป็นการตั้งค่าจากโรงงานแล้ว ข้อมูลทั้งหมดถูกลบออกและ PIN จะถูกตั้งกลับไป เป็น "000000"

5.7 การทดสอบตัวเองของเครื่องมือ

การนำทาง: ตั้งค่า > มี} > บริการ > ทดสอบอุปกรณ์เอง

การทดสอบตัวเองของเครื่องมือจำเป็นต้องดำเนินการโดยผู้ใช้

- ไ เลือกตัวเลือก ทดสอบอุปกรณ์เอง
 - 🖻 ดำเนินการทดสอบการแสดงผล จากนั้น หน้าจอการทดสอบตัวเองจะปรากฏขึ้น
- 2 กดปุ่มฟังก์ชันบนแป้นพิมพ์ทีละดัวตามลำดับ
 - 🗢 ผลการทดสอบตัวเองจะปรากฏขึ้นในสองสามวินาทีหลังจากนั้น
 - ⇔ เครื่องวัดกลับไปที่เมนูการตั้งค่าระบบโดยอัตโนมัติ

ประกาศ

- คุณจะต้องกดปุ่มทั้งหมดภายในสองนาที มิเช่นนั้น การทดสอบลัมเหลวจะปรากฏขึ้นและต้องเริ่มขั้นตอนซ้า อีกครั้ง
- หากมีข้อความผิดพลาดปรากฏขึ้นซ้ำ ๆ โปรดติดต่อ METTLER TOLEDO บริการ:

6 การวัดค่าการนำไฟฟ้า

6.1 การตั้งค่าการวัด

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า

1.	เข็นเชอร์ ID/SN	4.	ชนิดจุดยุติ
	1. ใส่เซ็นเซอร์ ID/SN	5.	ตั้งค่าอุณหภูมิ
	2. เลือกเซ็นเซอร์ ID		1. ตั้งค่าอุณหภูมิ MTC
2.	ตั้งค่าสอบเทียบ		2. หน่วยอุณหภูมิ
	1. มาดรฐานสอบเทียบ	6.	ข้อจำกัดในการวัด
	2. เดือนสอบเทียบ		1. จำกัดค่าการนำไฟฟ้า
3.	ตั้งค่าการวัด		2. จำกัดค่า TDS
	 อุณหภูมิอ้างอิง 		2. จำกัดค่าความเค็ม
	2. ค่าแก้ไขอุณหภูมิ		4. จำกัดค่าต้านทานไฟฟ้า
	3. ปัจจัยของ TDS		5. จำกัด conductivity Ash
	4. หน่วยค่าการนำไฟฟ้า		6. จำกัดอุณหภูมิ
	5. Conductivity Ash		
	6. หน่วยความเค็ม		

6.1.1 ID / SN ของเซ็นเซอร์

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > เข็นเชอร์ ID

เมื่อเชื่อมต่อ ISM®sensorกับเครื่องวัด เครื่องวัดจะ:

- จำแนกเซ็นเซอร์โดยอัตโนมัติเมื่อเปิดใช้งาน (หรือเมื่อมีการกด **READ**หรือ **CAL**)
- โหลด ID เซ็นเซอร์, SN เซ็นเซอร์, และประเภทของเซ็นเซอร์ รวมถึงข้อมูลการสอบเทียบล่าสุดที่บันทึกไว้ ของเซ็นเซอร์นี้
- ใช้การสอบเทียบนี้สำหรับการวัดค่าในครั้งต่อ ๆ ไป

ID เซ็นเซอร์ของเซ็นเซอร์ ®ISM สามารถเปลี่ยนแปลงได้ อย่างไรก็ตาม SN เซ็นเซอร์และประเภทของเซ็นเซอร์ จะถูกบล็อกไว้ทำให้ไม่สามารถปรับเปลี่ยนได้

พารามิเตอร์	ลักษณะ	ค่า
เซ็นเซอร์ ID	ป้อน ID ที่เป็นตัวอักษรและตัวเลขสำหรับเซ็นเซอร์	112 อักขระ
	สามารถจัดเก็บ ID เซ็นเซอร์ไว้ในหน่วยความจำ และแสดงให้ เลือกในรายการได้สูงสุด 30 รายการ หากจำนวน ID ที่จัดเก็บไว้ ถึงจำนวนสูงสุด เครื่องวัดจะแสดงข้อความ ห น่วยความจำเต็ม	
เซ็นเซอร์ SN	ป้อนหมายเลขเครื่องที่เป็นตัวเลขหรือตัวอักษรสำหรับเซ็นเซอร์ ตรวจพบหมายเลขเครื่องของเซ็นเซอร์® ISM โดยอัตโนมัดิ	112 อักขระ

หากมีการป้อน ID เซ็นเซอร์ใหม่ จะมีการโหลดความชั้นของการสอบเทียบเชิงทฤษฎีและค่าออฟเซตสำหรับอิ เล็กโทรดประเภทนี้ เซ็นเซอร์จะต้องได้รับการสอบเทียบใหม่

หากมีการป้อน ID เซ็นเซอร์ซึ่งมีอยู่แล้วในหน่วยความจำของเครื่องวัดและได้รับการสอบเทียบมาก่อนแล้ว จะมี การโหลดข้อมูลการสอบเทียบที่เฉพาะเจาะจงสำหรับ ID เซ็นเซอร์นี้

พารามิเตอร์	ลักษณะ	ค่า
เลือกเซ็นเซอร์ ID	หากต้องการเลือกเซ็นเซอร์ออกจากรายชื่อของเซ็นเซอร์ที่มีอยู่ หากมีการเลือก ID เซ็นเซอร์ที่ได้รับการสอบเทียบมาแล้วก่อนหน้า จะมีการโหลดข้อมูลการสอบเทียบที่เฉพาะเจาะจงสำหรับ ID เซ็นเซอร์นี้	รายการ ID เซ็นเซอร์ที่ ใช้ได้

6.1.2 การตั้งค่าการสอบเทียบ

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าสอบเทียบ

พารามิเตอร์	ลักษณะ	ค่า
มาตรฐานสอบ เทียบ	มาตรฐานกำหนด: ใช้หนึ่งในมาตรฐานการนำไฟฟ้าที่กำหนดไว้ ล่วงหน้า มาตรฐานลูกค้า: สามารถป้อนค่าที่อิงตามอุณหภูมิ (ในหน่วย mS/cm เท่านั้น) ลงในตารางได้สูงสุด 5 ค่า ค่าต่ำสุดที่เป็นไปได้ ของสารละลายมาตรฐานพิเศษ: 0.00005 mS/cm (0.05 µS/cm) ค่านี้ตรงตามค่าการนำไฟฟ้าของน้ำบริสุทธิ์ที่ 25 °C ที่เกิดจากการ การแตกตัวให้โปรตอนด้วยตัวเองของน้ำ การใส่ค่าคงที่เชล: หากทราบค่าคงที่ที่ถูกต้องของเซลล์การนำไฟฟ้าที่ใช้ ผู้ใช้ สามารถป้อนค่านั้นเข้าในเครื่องวัดค่าได้โดยตรง คุณได้รับ ข้อความพร้อมรับเพื่อป้อนค่าคงที่เซลล์เมื่อทำการสอบเทียบ เซ็นเซอร์	มาตรฐานกำหนด มาตรฐานลูกค้า การใส่ ค่าคงที่เซล

มาตรฐานกำหนด

สากล	จีน	ญี่ปุ่น
10 µS/cm	146.5 µS/cm	1330.00 µS/cm
84 µS/cm	1408 µS/cm	133.00 µS/cm
500 µS/cm	12.85 mS/cm	26.6 µS/cm
1413 µS/cm	111.35 mS/cm	
12.88 mS/cm		
สารละลาย NaCl อิ่ม ตัว		

เมื่อเปลี่ยนจากมาตรฐานที่กำหนดไว้ล่วงหน้าเป็นมาตรฐานที่ปรับแต่งเอง คุณควรบันทึกตารางแม้ว่าจะไม่ได้ เปลี่ยนแปลงค่าใด ๆ

พารามิเตอร์	ลักษณะ	ค่า
เดือนสอบเทียบ	หากเปิดใช้งาน การแจ้งเดือนให้ดำเนินการสอบเทียบจะปรากฏขึ้น	เปิด ปิด
	หลังจากครบช่วงเวลาที่กำหนดไว้	

6.1.3 การตั้งค่าการวัด

6.1.3.1 อุณหภูมิอ้างอิง

ี้ การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าการวัด > อุณหภูมิอ้างอิง

พารามิเตอร์	ลักษณะ	ค่า
อุณหภูมิอ้างอิง	กำหนดอุณหภูมิอ้างอิงที่จะนำมาใช้เพื่อแก้ไขค่าการนำไฟฟ้าที่	20 °C (68 °F) 25 °C
	อ่านได้ให้ถูกต้อง	(77 °F)

6.1.3.2 การแก้ไขอุณหภูมิ/ส้มประสิทธิ์อัลฟา

ีการนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าการวัด > ค่าแก้ไขอุณหภูมิ

พารามิเตอร์	ลักษณะ	ค่า
ค่าแก้ไขอุณหภูมิ	กำหนดความสัมพันธ์ระหว่างการนำไฟฟ้า อุณหภูมิ และความเข้ม ข้น	เส้นตรง ไม่เป็นเส้นตรง น้ำบริสุทธิ์ ปิด
	เ ส้นตรง : ใช้สำหรับการแก้ไขอุณหภูมิของสารละลายที่นำไฟฟ้า ปานกลางและสูง	
	ไม่เป็นเส้นตรง : ใช้สำหรับน้ำธรรมชาติ (เฉพาะสำหรับอุณหภูมิ ระหว่าง 036 °C) ค่าการนำไฟฟ้าที่วัดได้ที่อุณหภูมิดัวอย่างได้ รับการแก้ไขเป็นอุณหภูมิอ้างอิงที่กำหนด (20 °C หรือ 25 °C)	
	น้ำบริสุทธิ์ : ใช้ประเภทของอัลกอรึธึมอุณหภูมิที่ปรับให้เหมาะสม	
	ป ิด : แสดงค่าการนำไฟฟ้าที่อุณหภูมิปัจจุบัน	

เส้นตรง

้ค่าการนำไฟฟ้าของสารละลายจะเพิ่มขึ้นเมื่ออุณหภูมิสูงขึ้น ในสารละลายส่วนใหญ่ จะกำหนดให้การนำไฟฟ้า และอุณหภูมิมีความสัมพันธ์แบบเชิงเส้น

ึการนำไฟฟ้าที่วัดได้จะได้รับการแก้ไขค่าและแสดงโดยใช้สูตรต่อไปนี้

 $GT_{Ref} = GT / (1 + \alpha (T - T_{Ref}) / 100\%)$

โดยที่

- GT = การนำไฟฟ้าที่วัดได้ที่อุณหภูมิ T (mS/cm)
- GT_{Ref} = การนำไฟฟ้า (mS/cm) แสดงที่เครื่องมือ คำนวณกลับไปเป็นอุณหภูมิอ้างอิง T_{Ref}
- a = ค่าสัมประสิทธิ์การแก้ไขอุณหภูมิเชิงเส้น (%/°C); a = 0: ไม่มีการแก้ไขอุณหภูมิ
- T = อุณหภูมิที่วัดได้ (°C)
- T_{Ref} = อุณหภูมิอ้างอิง (20°C หรือ 25°C)

แต่ละตัวอย่างจะแสดงลักษณะอุณหภูมิที่แตกต่างกัน สำหรับสารละลายเกลือบริสุทธิ์สามารถพบค่าสัมประสิทธิ์ ที่ถูกต้องได้ในเอกสารข้อมูล หรือมิเช่นนั้น คุณต้องทำการกำหนดค่าสัมประสิทธิ์ด้วยการวัดค่าการนำไฟฟ้าของ ตัวอย่างที่สองอุณหภูมิ และคำนวณสัมประสิทธิ์โดยใช้สูตรข้างล่าง

 $\alpha = (GT1 - GT2) \cdot 100\% / (T1 - T2) / GT2$

Tl: อุณหภูมิตัวอย่างตามปกติ

T2: อุณหภูมิอ้างอิง

GT1: การนำไฟฟ้าที่วัดที่อุณหภูมิตัวอย่างตามปกดิ

GT2: การนำไฟฟ้าที่วัดที่อุณหภูมิอ้างอิง

ไม่เป็นเส้นตรง

การนำไฟฟ้าของน้ำธรรมชาดิจะแสดงลักษณะอุณหภูมิแบบไม่เป็นเชิงเส้นอย่างชัดเจน ด้วยเหตุนี้ ให้ใช้การ แก้ไขแบบไม่เป็นเชิงเส้นสำหรับน้ำธรรมชาติ

ค่าการนำไฟฟ้าที่วัดได้คูณด้วยแฟกเตอร์ f₂₅ สำหรับอุณหภูมิที่วัดได้ และได้รับการแก้ไขตามอุณหภูมิอ้างอิงที่ 25 °C:

 $\mathsf{GT}_{25} = \mathsf{GT} \, \boldsymbol{\cdot} \, \mathsf{f}_{25}$

หากใช้อุณหภูมิอ้างอิงอื่น ดัวอย่างเช่น อุณหภูมิ 20°C ค่าการนำไฟฟ้าที่แก้ไขเป็นค่าการนำไฟฟ้าที่ 25 °C จะ หารด้วย 1.116 (ดูที่ f₂₅ สำหรับ 20.0 °C)

 $GT_{20} = (GT \cdot f_{25}) / 1.116$

น้ำบริสุทธิ์

การแก้ไขแบบไม่เป็นเชิงเส้นประเภทอื่นจะถูกใช้สำหรับน้ำบริสุทธิ์พิเศษและน้ำบริสุทธิ์ เช่นเดียวกับการแก้ไข แบบไม่เป็นเชิงเส้นสำหรับน้ำธรรมชาติ ค่าจะถูกชดเชยในช่วงตั้งแต่ 0.005 ถึง 5.00 µS/cm ที่อุณหภูมิ (0 -50 °C) ซึ่งแตกต่างจากอุณหภูมิอ้างอิง (25 °C) เช่น ในการตรวจสอบอุปกรณ์ผลิตน้ำบริสุทธิ์หรือบริสุทธิ์พิเศษ หรือเมื่อตรวจสอบว่าขั้นตอนการทำความสะอาดที่กำลังดำเนินการ ซึ่งมีการใช้น้ำบริสุทธิ์พิเศษนั้น ส่งผลให้ สารละลายถูกกำจัดออกไปทั้งหมดหรือไม่ เนื่องจาก CO ²ในอากาศมีอิทธิพลสูง ขอแนะนำให้ใช้เซลล์แบบ flow-through-cell ในการวัดค่าประเภทนี้

ประกาศ

- การวัดค่าการนำไฟฟ้าโดยใช้โหมดการชดเชยน้ำบริสุทธ์ ทำได้ที่ช่วงอุณหภูมิตั้งแต่ 0 °C ถึง 50 °C ไม่เช่น นั้น ข้อความเดือน อุณหภูมิออกนอกช่วง pure water จะปรากฏขึ้น
- ในกรณีที่ค่าการนำไฟฟ้าเกินขีดจำกัดบนของ 5.00 µS/cm ในโหมดน้ำบริสุทธิ์ การชดเชยจะคล้ายกับโหมด การชดเชยแบบเส้นตรง a = 2.00 %/°C

6.1.3.3 แฟกเตอร์ TDS

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าการวัด > ปัจจัยของ TDS

พารามิเตอร์	ลักษณะ	ค่า
ปัจจัยของ TDS	TDS (ของแข็งที่ละลายทั้งหมด) จะคำนวณได้ด้วยการคูณค่าการ นำไฟฟ้าด้วยแฟกเตอร์ TDS	0.102.00

ยังเห็น

🖹 การนำไฟฟ้าต่อแฟกเตอร์การแปลง TDS 🕨 หน้า 45

6.1.3.4 หน่วยการนำไฟฟ้า

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าการวัด > หน่วยค่าการนำไฟฟ้า

พารามิเตอร์	ลักษณะ	ค่า
หน่วยค่าการนำ ไฟฟ้า	μS/cm and mS/cm : เครื่องจะสวิตช์ไปที่ μS/m และ mS/cm โดย อัตโนมัดิซึ่งจะขึ้นอยู่กับค่าการวัด หน่วยนี้มีความเป็นมาตรฐาน สำหรับการวัดค่าการนำไฟฟ้าส่วนใหญ่	µS/cm และ mS/cm I µS/ m และ mS/m
	µS/m and mS/m : เครื่องจะสวิตช์ไปที่ µS/m and mS/m โดย อัตโนมัดิซึ่งจะขึ้นอยู่กับค่าการวัด หน่วยนี้ใช้สำหรับการวัดค่าการ นำไฟฟ้าขอเอทานอลตามวิธีการ ABNT / ABR 10547 เป็นต้น	

6.1.3.5 การนำไฟฟ้า Ash

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าการวัด > Conductivity Ash

การนำไฟฟ้า Ash (%) เป็นพารามิเตอร์ที่สำคัญตัวหนึ่งซึ่งแสดงถึงเกลืออนินทรีย์ที่ละลายน้ำได้ในน้ำตาลผ่าน การทำบริสุทธิ์หรือน้ำตาลดิบ/กากน้ำตาล สิ่งเจือปนอนินทรีย์ที่ละลายน้ำได้นี้ ส่งผลกระทบโดยตรงต่อความ บริสุทธิ์ของน้ำตาล เครื่องมือนี้จะแปลงค่าการนำไฟฟ้าที่วัดได้ไปเป็น % ค่าการนำไฟฟ้า Ashได้ตามวิธีที่เลือก ได้โดยตรง

พารามิเตอร์ ลักษณะ ด่า วิธี ICUMSA เลือกวิธีการสำหรับการวัดค่าการนำไฟฟ้า Ash 28 กรัม (Refined Sugar) | 5 กรัม (Raw 28 กรัม (Refined Sugar): 28 ก. / สารละลาย 100 ก. (น้ำตาล Sugar and Molasses) ผ่านการทำบริสุทธิ์ - ICUMSA GS2/3-17) 5 กรัม (Raw Sugar and Molasses) : 5 ก. / สารละลาย 100 ก. (น้ำตาลดิบ - ICUMSA GS1/3/4/7/8-13) ป้อนค่าการนำ สามารถป้อนค่าการนำไฟฟ้าของน้ำที่ใช้ในการเตรียมสารละลาย 0.0...100.0 µS/cm ไฟฟ้าของน้ำใช้ ้น้ำตาล ค่านี้จะนำไปใช้ในการแก้ไขค่าการนำไฟฟ้า Ash ที่วัดได้ แล้ว

การวัดค่าการนำไฟฟ้า Ash จะทำได้ในช่วงอุณหภูมิจาก 15 °C ถึง 25 °C

ยังเห็น

฿ วิธีการนำไฟฟ้า Ash"): ▶ หน้า 46

6.1.3.6 หน่วยความเค็ม

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าการวัด > หน่วยความเค็ม

พารามิเตอร์	ลักษณะ	ค่า
หน่วยความเค็ม	เลือกหน่วยในการวัดความเค็ม	psu I ppt

ยังเห็น

๒ ระดับความเค็มที่ใช้จริง (UNESCO 1978) ▶ หน้า 44

6.1.4 ประเภทจุดยุติ

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ชนิดจุดยุติ

พารามิเตอร์	ลักษณะ	ค่า
ชนิดจุดยุติ	จุดยุดิอัตโนมัติ : เครื่องวัดจะกำหนดเวลาที่เครื่องวัดจะหยุดตาม เกณฑ์ความเสถียรที่โปรแกรมไว้ จุดยุติแบบมือ : ผู้ใช้จะต้องหยุดการวัดด้วยตนเอง จุดยุติแบบเวลา : เครื่องวัดจะหยุดการวัดหลังจากเวลาที่กำหนด ไว้	จุดยุติอัตโนมัติ จุดยุติ แบบมือ จุดยุติแบบ เวลา
ป้อนเวลา	ระยะเวลา [s] จนกระทั่งถึงจุดยุติของการวัดหากมีการตั้งค่า ชนิด จุดยุติเป็นจุดยุติแบบเวลา	53600 วินาที

6.1.5 การตั้งค่าอุณหภูมิ

พารามิเตอร์	ลักษณะ	ค่า
ตั้งค่าอุณหภูมิ MTC	ถ้าเครื่องวัดไม่พบหัววัดอุณหภูมิ MTCจะปรากฏบนหน้าจอ ในกรณี นี้ ควรป้อนอุณหภูมิตัวอย่างด้วยตนเอง	-30 °C…130 °C I -22 °F…266 °F
หน่วยอุณหภูมิ	กำหนดหน่วยอุณหภูมิที่ใช้ในการวัด ค่าอุณหภูมิจะได้รับการแปลง โดยอัตโนมัดิระหว่างสองหน่วย	°CI°F

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ตั้งค่าอุณหภูมิ

6.1.6 ขีดจำกัดการวัดค่า

สามารถกำหนดขีดจำกัดสูงสุดและต่ำสุดสำหรับข้อมูลการวัดได้ หากไม่ถึงขีดจำกัดหรือเกิดขีดจำกัด (หรือกล่าว อีกอย่างหนึ่งว่า น้อยกว่าหรือมากกว่าค่าที่ระบุ) จะมีคำเดือนแสดงบนหน้าจอและอาจมีสัญญาณเสียงด้วย นอกจากนี้ข้อความ **เกินระดับที่กำหนด**ยังปรากฏอยู่บนเอกสารพิมพ์ออก GLP

การนำทาง: ตั้งค่า > ค่าการนำไฟฟ้า > ข้อจำกัดในการวัด

พารามิเตอร์	ลักษณะ	ค่า
จำกัดค่าการนำ ไฟฟ้า	กำหนดขีดจำกัดสูงสุดและต่ำสุดสำหรับค่าการนำไฟฟ้าในหน่วย [mS/cm]	0.000011000.00
จำกัดค่า TDS	กำหนดขีดจำกัดสูงสุดและต่ำสุดสำหรับค่า TDS ในหน่วย [g/L]	0.000011000.00
จำกัดค่าความเค็ม	กำหนดขีดจำกัดสูงสุดและต่ำสุดสำหรับค่าความเค็มในหน่วย [psu/ppt]	0.0080.00
จำกัดค่าต้านทาน ไฟฟ้า	กำหนดขีดจำกัดสูงสุดและต่ำสุดสำหรับค่าความค้านทานไฟฟ้าใน หน่วย [MΩ ● cm]	0.00100.00
จำกัด conductivity Ash	กำหนดขีดจำกัดสูงสุดและต่ำสุดในหน่วย [%]	0.002022.00
จำกัดอุณหภูมิ	กำหนดขีดจำกัดสูงสุดและต่ำสุดสำหรับอุณหภูมิ	-30130 °C -22.0 266 °F

6.2 การสอบเทียบเช็นเซอร์

ี่ก่อนที่จะดำเนินการสอบเทียบ ให้เลือกช่องสัญญาณ **ค่าการนำไฟฟ้า** โดยใช้ปุ่ม **ช่องทาง**

- กด Read ค้างไว้เพื่อเปลี่ยนโหมดการแสดงผล (uFocus™)
- ตรวจสอบให้แน่ใจว่าได้เลือกสารละลายสอบเทียบมาตรฐานที่เหมาะสมแล้ว
- 1 วางเซ็นเซอร์ลงในมาตรฐานการสอบเทียบและ กด Cal
 - ⇒ Cal จะปรากฏบนจอแสดงผลและไอคอน ชนิดจุดยุติ จะกระพริบ
- 2 ไอคอน / จะปรากฏทันทีที่สัญญาณมีเสถียรภาพ การวัดจะหยุดโดยอัตโนมัติหากมีการเลือก ชนิดจุดยุติ
 > จุดยุติอัตโนมัติ

- หรือ -

- เพื่อหยุดการวัดด้วยตนเอง กด Read
- 🗢 ผลการสอบเทียบจะปรากฏบนจอแสดงผล
- 3 กด **บันทึก** เพื่อบันทึกผลลัพธ์

- หรือ -

กด **ออก** เพื่อปฏิเสธการสอบเทียบและกลับไปที่หน้าจอการวัดค่า

ประกาศ

 จุดที่สองที่จำเป็นต้องใช้สำหรับเส้นโค้งการสอบเทียบค่าการนำไฟฟ้า ถูกตั้งโปรแกรมไว้ถาวรในเครื่องวัด และเท่ากับ 0 S/m สำหรับความต้านทานจำเพาะที่เคลื่อนที่เข้าหาค่าอนันต์ เพื่อให้แน่ใจว่าค่าการนำไฟฟ้าที่ อ่านได้มีความถูกต้องสูงสุด ควรตรวจสอบค่าคงที่เซลล์ด้วยสารละลายมาตรฐานเป็นประจำ และทำการสอบ เทียบใหม่หากจำเป็น

ยังเห็น

🖹 การตั้งค่าการสอบเทียบ ▶ หน้า 23

6.3 การวัดค่าตัวอย่าง

- กดปุ่ม **Read** ค้างไว้เพื่อเปลี่ยนโหมดแสดงผล (uFocus™)
- กด โหมดทำงาน ค้างไว้เพื่อเปลี่ยนการเลือกช่องสัญญาณหากช่องสัญญาทั้งสองช่องทำงานอยู่ จากนั้นกด
 โหมดทำงาน เพื่อเปลี่ยนโหมดการวัดค่า
- 1 วางเซ็นเซอร์ในดัวอย่างและกด Read เพื่อเริ่มการวัดค่า
 - ⇒ ไอคอน ชนิดจุดยุติ กะพริบอยู่ ระบุว่าอยู่ในระหว่างขั้นตอนการวัดค่า ส่วนแสดงผลจะแสดงค่าของ ตัวอย่าง
- 2 ไอคอน / ี จะปรากฏทันทีที่สัญญาณมีเสถียรภาพ การวัดจะหยุดโดยอัตโนมัติหากมีการเลือก **ชนิดจุดยุต**ิ
 - > จุดยุติอัตโนมัติ
 - หรือ -
 - เพื่อหยุดการวัดด้วยตนเอง กด **Read**
- ⇔ การวัดค่าถูกหยุดและค่าที่วัดได้จะปรากฏขึ้น

ชนิดจุดยุติ

- จุดยุติอัตโนมัติ: การวัดค่ายุติโดยอัตโนมัติเมื่อสัญญาณเสถียร
- จุดยุติแบบมือ: กด Read เพื่อยุติการวัดด้วยตนเอง
- จุดยุติแบบเวลา: การวัดยุติลงเมื่อครบตามเวลาที่กำหนดไว้ล่วงหน้า

7 การจัดการข้อมูล

การนำทาง: ข้อมูล

1.	ข้อมูลการวัด		ข้อมูล ISM (บันทึกอิเล็กโทรด)
	1. ทบทวน		1. ค่า pH
	2. โอน		1.1 ข้อมูลสอบเทียบแรก
	3. ลบ		1.2 ประวัติสอบเทียบ
2.	ข้อมูลสอบเทียบ		1.3 บันทึกอิเล็กโทรด
	1. ค่า pH		1.4 ตั้งค่า ISM ใหม่
	1.1 ทบทวน		2. ค่าการนำไฟฟ้า
	1.2 โอน		2.1 ข้อมูลสอบเทียบแรก
	1.3 ລນ		2.2 ประวัติสอบเทียบ
	2. ค่าการนำไฟฟ้า		2.3 บันทึกอิเล็กโทรด
	2.1 ทบทวน		2.4 ตั้งค่า ISM ใหม่
	2.2 โอน	4.	อินเทอร์เฟซการถ่ายโอน
	2.3 ລນ		

7.1 ข้อมูลการวัดค่า

การนำทาง: ข้อมูล > ข้อมูลการวัด

ข้อมูลการวัดที่เก็บไว้ทั้งหมดสามารถตรวจสอบ โอนย้ายไปยังตัวเลือกที่เลือกหรือลบได้ การลบป้องกันโดย PIN เมื่อจัดส่ง PIN จะถูกตั้งค่าเป็น 000000 เปลี่ยนรหัส PIN เพื่อป้องกันการเข้าใช้งานโดยไม่ได้รับอนุญาต สามารถ กรองข้อมูลการวัดค่าได้ตามเกณฑ์ที่แตกต่างกัน

- 1 เลือกการดำเนินการที่ต้องการ ทบทวนโอน หรือ ลบ
- 2 เลือก ทั้งหมด เพื่อเลือกข้อมูลทั้งหมด
 - หรือ -
 - เลือก **บางส่วน** เพื่อใช้ดัวกรองกับสิ่งที่เลือกไว้
 - หรือ -

เลือก ใหม่ เพื่อเลือกข้อมูลที่ยังไม่ได้โอนย้ายทั้งหมด

⇔ การดำเนินการที่เลือกไว้จะใช้กับข้อมูลที่กรองแล้ว

ตัวเลือกตัวกรอง

ตัวแปร	รายละเอียด
บางส่วน ตาม วัน/เวลา	 ป้อนช่วงเวลาของข้อมูลและกด เลือก
	⇔ ข้อมูลการวัดจะปรากฏขึ้น
บางส่วน โดยช่องทาง	 ป้อนช่องสัญญาณของข้อมูลและกด เลือก
บางส่วน ตามตัวเลขความจำ	l ป้อนตัวหมายเลขความจำของข้อมูลและกด เลือก
	⇔ ข้อมูลการวัดจะปรากฏขึ้น
	2 เลื่อนดูข้อมูลการวัดเพื่อทบทวนการวัดทั้งหมดที่อยู่ระหว่างหมายเลข
	หน่วยความจำสองรายการ
บางส่วน ตามตัวอย่าง ID	1 ป้อน ID ตัวอย่างและกด OK
	⇔ เครื่องวัดค้นหาการวัดที่เก็บบันทึกไว้ทั้งหมดที่มี ID ตัวอย่างนี้
	 เลื่อนดูข้อมูลการวัดเพื่อทบทวนการวัดทั้งหมดที่มี ID ตัวอย่างตามที่ป้อน เข้า

ตัวแปร	รายละเอียด	
บางส่วน ดามวิธีการวัด	 เลือกโหมดการวัดจากรายการ เครื่องวัดคันหาการวัดที่เก็บบันทึกไว้ ทั้งหมดของโหมดการวัดที่เลือก เลื่อนดูข้อมูลการวัดของโหมดการวัดที่เลือกไว้ 	

7.2 ข้อมูลการสอบเทียบ

การนำทาง: ข้อมูล > ข้อมูลสอบเทียบ

ข้อมูลการสอบเทียบที่เก็บไว้ทั้งหมดสามารถตรวจสอบ โอนย้ายไปยังตัวเลือกที่เลือกหรือลบได้ การลบป้องกัน โดย PIN เมื่อจัดส่ง PIN จะถูกตั้งค่าเป็น 000000 เปลี่ยนรหัส PIN เพื่อป้องกันการเข้าใช้งานโดยไม่ได้รับอนุญาต

- 1 เลือกช่องสัญญาณ ค่า pH หรือ ค่าการนำไฟฟ้า
- 2 เลือกการดำเนินการที่ต้องการ ทบทวนโอน หรือ **ลบ**
 - ⇔ รายการของ ID เซ็นเซอร์ที่สอบเทียบจะปรากฏขึ้น
- 3 เลือกเซ็นเซอร์จากรายการเพื่อเริ่มต้นการดำเนินการที่เลือก
- ⇔ การดำเนินการที่เลือกจะถูกนำไปใช้กับเซ็นเซอร์

ประกาศ

• หลังจากลบ ID เซ็นเซอร์จะหายไปจากรายการในเมนู ID เซ็นเซอร์

7.3 ข้อมูล ISM

การนำทาง: ข้อมูล > ข้อมูล ISM

เครื่องวัด SevenCompact มีเทคโนโลยีการจัดการเซ็นเซอร์อัจฉริยะ (ISM®) ฟังก์ชันที่ชาญฉลาดนี้เพิ่มการรักษา ความปลอดภัย ความปลอดภัย และป้องกันข้อผิดพลาด

- เมื่อเชื่อมต่อเซ็นเซอร์ [®]ISM แล้ว ระบบจะจำแนกเซ็นเซอร์โดยอัตโนมัติ และ ID เซ็นเซอร์และหมายเลข เครื่องจะถูกถ่ายโอนจากชิพเซ็นเซอร์ไปยังเครื่องวัด ข้อมูลจะถูกจัดพิมพ์บนเอกสาร GLP ด้วย
- เมื่อสอบเทียบเซ็นเซอร์ [®]ISM แล้ว ข้อมูลการสอบเทียบจะถูกจัดเก็บจากเครื่องวัดไปยังชิพในเซ็นเซอร์โดย อัตโนมัติ ข้อมูลล่าสุดจะถูกจัดเก็บไว้ในจุดที่เหมาะสมเสมอ นั่นคือ บนชิพเซ็นเซอร์!
- เมื่อเชื่อมต่อเซ็นเซอร์ [®]ISM แล้ว จะมีการโอนข้อมูลการสอบเทียบ 5 รายการล่าสุดไปยังเครื่องวัด สามารถ ตรวจสอบเพื่อดูการทำงานของเซ็นเซอร์เมื่อเวลาผ่านไป สามารถใช้ข้อมูลนี้เป็นสัญญาณบ่งชี้ว่า ควรทำ ความสะอาดหรือซ่อมแซมเซ็นเซอร์หรือไม่
- เมื่อเชื่อมต่อเซ็นเซอร์ [®]ISM แล้ว จะมีการนำข้อมูลการสอบเทียบชุดสุดท้ายไปใช้ในการวัดค่าโดยอัตโนมัติ

เซ็นเซอร์วัดค่า pH ที่ใช้ข้อมูลการสอบเทียบครั้งแรก

ขณะที่เชื่อมต่อเซ็นเซอร์ ®ISM สามารถทบทวนหรือถ่ายโอนข้อมูลการสอบเทียบครั้งแรกในเซ็นเซอร์ได้ ซึ่ง ประกอบด้วยข้อมูลต่อไปนี้:

- เวลาตอบสนองระหว่างค่า pH 4.01 และ 7.00
- เกณฑ์ความคลาดเคลื่อนอุณหภูมิ
- ความต้านทานของเยื่อแก้ว
- ความชั้น (การสอบเทียบกับค่า pH 4.01 และ 7.00) และค่าออฟเซต
- ประเภท (และชื่อ) ของอิเล็กโทรด (เช่น InLab Expert Pro ISM®)
- หมายเลขเครื่อง (SN) และหมายเลขคำสั่ง
- วันที่ผลิต

เซ็นเชอร์วัดค่าความนำไฟฟ้าที่ใช้ข้อมูลการสอบเทียบครั้งแรก

ขณะที่เชื่อมต่อเซ็นเซอร์ [®]ISM สามารถทบทวนหรือถ่ายโอนข้อมูลการสอบเทียบครั้งแรกในเซ็นเซอร์ได้ ซึ่ง ประกอบด้วยข้อมูลต่อไปนี้:

- เวลาการตอบสนอง
- เกณฑ์ความคลาดเคลื่อนอุณหภูมิ
- ค่าคงที่ของเซลล์
- เกณฑ์ความคลาดเคลื่อนค่าคงที่ของเซลล์
- ประเภท (และชื่อ) ของอิเล็กโทรด (เช่น InLab 731-ISM®)
- หมายเลขเครื่อง (SN) และหมายเลขคำสั่ง
- วันที่ผลิต

อุปกรณ์เสริม

ตัวแปร	รายละเอียด
ประวัดิสอบเทียบ	สามารถทบทวนข้อมูลและถ่ายโอนข้อมูลการสอบเทียบ 5 ครั้งล่าสุดที่เก็บไว้ ในเซ็นเซอร์ ISM [®] รวมถึงข้อมูลการสอบเทียบปัจจุบัน
อุณหภูมิสูงสุด	อุณหภูมิสูงสุดที่เช็นเซอร์ ISM [®] สามารถทำงานได้ในระหว่างการวัดจะได้รับ การตรวจติดตามโดยอัตโนมัติ และสามารถทบทวนเพื่อประเมินอายุการใช้ งานของอิเล็กโทรดได้
ตั้งค่า ISM ใหม่	สามารถลบประวัติการสอบเทียบในเมนูนี้ได้ เมนูนี้มีการป้องกันการลบด้วย PIN เมื่อจัดส่ง PIN สำหรับการลบจะถูกตั้งค่าไว้ที่ 000000 เปลี่ยน PIN เพื่อ ป้องกันการเข้าใช้งานโดยไม่ได้รับอนุญาต

7.4 อินเทอร์เฟซการถ่ายโอน

การนำทาง: ข้อมูล > อินเทอร์เฟชการถ่ายโอน

สามารถถ่ายโอนข้อมูลการวัดค่าที่จัดเก็บไว้ทั้งหมดไปยังอินเตอร์เฟซที่เลือก

พารามิเตอร์	ลักษณะ	ค่า
อินเดอร์เฟซ	USB-stick : ข้อมูลจะถูกเก็บไว้แฟลชไดรฟ์ USB ที่เชื่อมต่อในรูป	USB-stick เครื่องพิมพ์
		คอมพวเตอร PC
	เครื่องพิมพ ่: ข้อมูลจะพิมพ์ไปยังเครื่องพิมพ์ที่เชื่อมต่อ	
	คอมพิวเตอร์ PC : ข้อมูลจะถ่ายโอนไปยังเครื่องพีซีที่เชื่อมต่อที่	
	ใช้งาน EasyDirect pH	

8 การบำรุงรักษาและการดูแล

ห้ามเปิดตัวเครื่องของอุปกรณ์เนื่องจากไม่มีขึ้นส่วนใดที่ผู้ใช้สามารถทำการบำรุงรักษา ช่อมแซมหรือเปลี่ยนได้ หากคุณพบปัญหากับเครื่องมือของคุณ โปรดติดต่อตัวแทนจำหน่าย METTLER TOLEDO หรือตัวแทนบริการที่ได้ รับอนุญาต

www.mt.com/contact

8.1 การทำความสะอาดเครื่องมือ

ประกาศ

อันตรายจากความเสียหายของเครื่องมืออันเนื่องมาจากสารทำความสะอาดที่ ไม่เหมาะสม!

ตัวเครื่องทำจากอะคริโลไนไตรล์บิวตะไดอีนสไตรีน/โพลีคาร์บอเนต (ABS/PC) วัสดุนี้ไวต่อ สารละลายอินทรีย์บางชนิด เช่น โทลูอีน ไซลีน และ เมทิลเอทิลคีโดน (MEK) หากของเหลว เข้าสู่ตัวเครื่องอาจก่อให้เกิดความเสียหายต่อเครื่องมือได้

- 1 ใช้เฉพาะน้ำและน้ำยาทำความสะอาดอย่างอ่อนในการทำความสะอาดตัวเครื่อง
- 2 เช็ดของเหลวที่หกทันที
- 3 เครื่องมือนี้สามารถกันน้ำที่สาดใส่ได้ในระดับ IP54: ห้ามจุ่มเครื่องมือลงในของเหลว
- เครื่องมือถูกปิดสวิตช์และตัดการเชื่อมต่อจากเต้าเสียบไฟฟ้า
- ทำความสะอาดตัวเครื่องของเครื่องมือด้วยผ้าชุบน้ำและน้ำยาทำความสะอาดอย่างอ่อน

8.2 การขนส่งเครื่องมือ

โปรดคำนึงถึงคำแนะนำต่อไปนี้ในขณะที่ขนส่งเครื่องมือไปยังตำแหน่งที่ตั้งใหม่:

- ขนส่งเครื่องมือด้วยความระมัดระวังเพื่อไม่ให้เกิดความเสียหาย! เครื่องมืออาจได้รับความเสียหายหากดำเนิน เคลื่อนย้ายโดยไม่ถูกต้อง
- ปลดปลั๊กเครื่องมือและนำสายเคเบิลเชื่อมต่อทั้งหมดออก
- นำแขนอิเล็กโทรดออก
- เพื่อหลีกเลี่ยงความเสียหายที่อาจเกิดกับเครื่องมือเมื่อขนส่งระยะทางไกล โปรดใช้บรรจุภัณฑ์เดิมที่มาพร้อม กับเครื่อง
- หากบรรจุภัณฑ์เดิมไม่สามารถใช้ได้แล้ว ให้เลือกบรรจุภัณฑ์ที่มั่นใจได้ว่าจะสามารถใช้ในการขนส่งได้อย่าง ปลอดภัย

8.3 การกำจัด

อุปกรณ์นี้ไม่สามารถกำจัดทิ้งเป็นขยะในท้องถิ่นทั่วไป เนื่องจากสอดคล้องตามข้อกำกับของ สหภาพยุโรป 2012/19/EU เกี่ยวกับซากเครื่องใช้ไฟฟ้าและอุปกรณ์อิเล็กทรอนิกส์ (WEEE) ข้อกำหนดนี้ยังบังคับใช้กับประเทศภายนอกสหภาพยุโรป ตามข้อกำหนดเฉพาะของประเทศ นั้นๆ

โปรดกำจัดทิ้งผลิตภัณฑ์นี้โดยสอดคล้องตามกฎระเบียบในท้องถิ่น ณ จุดจัดเก็บขยะเฉพาะ ของขยะเครื่องใช้ไฟฟ้าและอุปกรณ์อิเล็กทรอนิกส์ หากคุณมีคำถามอื่นใด โปรดดิดต่อหน่วย งานที่รับผิดชอบหรือตัวแทนจำหน่ายที่คุณชื้ออุปกรณ์นี้ หากอุปกรณ์นี้จัดส่งให้กับบุคคล ภายนอกอื่น (เพื่อการใช้งานส่วนตัวหรือการใช้งานทางอาชีพ) ยังต้องปฏิบัติดามเนื้อหาตาม กฎระเบียบนี้ด้วย

ขอขอบคุณสำหรับความร่วมมือของคุณเพื่อการปกป้องสภาพแวดล้อม

9 การแก้ไขปัญหา

9.1 ข้อความแสดงข้อผิดพลาด

ข้อความ	คำอธิบายและการแก้ปัญหา	
การนำไฟฟ้า/TDS/ ความเค็ม/ความ ต้านทาน/เถ้าการนำไฟฟ้า/อุณหภูมิเกิน	ขอบเขตการวัดค่าถูกเปิดใช้งานในการตั้งค่าเมนู และค่าที่วัดได้ อยู่นอกขอบเขตเหล่านี้	
ขอบเขดสูงสุด	• ตรวจสอบตัวอย่าง	
การนาไฟฟา/IDS/ ความเคม/ความ ตัวแหวน/เด้วอารนำไฟฟัล/วอเนอมีต่ำอาว	 ตรวจสอบอุณหภูมิของตัวอย่าง 	
ขอบเขตด่ำสุด	 ตรวจสอบให้แน่ใจว่าได้ถอดฝ่าเปียกของอิเล็กโทรดวัดค่า pH ออกและทำการเชื่อมต่ออิเล็กโทรดอย่างถูกต้องและวางลงใน สารละลายตัวอย่าง 	
หน่วยความจำเต็ม	สามารถจัดเก็บข้อมูลการวัดค่าได้สูงสุด 1000 รายการในหน่วย ความจำ	
	 ลบข้อมูลทั้งหมดหรือบางส่วนในหน่วยความจำ มิฉะนั้นคุณจะ ไม่สามารถจัดเก็บข้อมูลการวัดค่าใหม่ได้ 	
โปรดปรับเทียบอิเล็กโทรด	การเดือนการปรับเทียบถูกเปิดในการตั้งค่าเมนู และการปรับเทียบ ล่าสุดหมดอายุลงแล้ว	
	 ปรับเทียบอิเล็กโทรด 	
เซ็นเซอร์ที่ใช้งานอยู่ไม่สามารถลบได้	ไม่สามารถลบข้อมูลการปรับเทียบของ ID เซ็นเซอร์ที่เลือกไว้ เนื่องจากเป็น ID เซ็นเซอร์ที่ใช้งานอยู่ในเครื่องวัดค่าที่แสดงบน ส่วนแสดงผล	
	 ป้อน ID เซ็นเซอร์ใหม่ในการตั้งค่าเมนู 	
	 เลือก ID เซ็นเซอร์อื่นจากรายการในการตั้งค่าเมนู 	
มาตรฐานผิดพลาด	เครื่องวัดค่าไม่สามารถจดจำมาตรฐานได้	
	ตรวจสอบให้แน่ใจว่าคุณมีมาตรฐานที่ถูกต้อง และเป็นมาตรฐาน ใหม่	
อุณหภูมิมาตรฐานอยู่นอกช่วง	อุณหภูมิ ATC ที่วัดได้อยู่นอกการปรับเทียบ	
	ช่วงมาตรฐาน: 5 ถึง 35 °C สำหรับมาตรฐานสากล และ 15 ถึง 35 °C สำหรับมาตรฐานจีน	
	รักษาอุณหภูมิมาตรฐานให้อยู่ภายในช่วง	
	เปลี่ยนการตั้งค่าอุณหภูมิ	
อุณหภูมิแดกต่างจากการตั้งค่า	อุณหภูมิ ATC ที่วัดได้มีความแตกต่างจากค่าที่กำหนดโดยผู้ใช้/ ช่วงอุณหภูมิมากกว่า 0.5°C	
	 รักษาอุณหภูมิมาตรฐานให้อยู่ภายในช่วง 	
	 เปลี่ยนการตั้งค่าอุณหภูมิ 	
ข้อผิดพลาดในการสื่อสารกับเซ็นเซอร์ ISM®	ข้อมูลจะไม่สามารถถ่ายโอนอย่างถูกต้องระหว่างเซ็นเซอร์ ISM® และเครื่องวัดค่า เชื่อมต่อเซ็นเซอร์ ISM® ใหม่แล้วลองอีกครั้ง	
การทดสอบระบบลัมเหลว	การทดสอบระบบไม่เสร็จสิ้นภายใน 2 นาที หรือเครื่องวัดค่าเกิด	
	ข้อผิดพลาด	
	 เริ่มทำการทดสอบระบบใหม่และทำให้เสร็จสิ้นภายใน 2 นาที 	
	 ติดต่อศูนย์บริการ METTLER TOLEDO หากยังพบปัญหานี้อยู่ 	

ข้อความ	คำอธิบายและการแก้ปัญหา		
การตั้งค่าผิดพลาด	ีค่าที่ป้อนแตกต่างไปจากค่าที่กำหนดล่วงหน้าน้อยกว่า 5°C		
	 ป้อนค่าที่สูงกว่า/ต่ำกว่าเพื่อดูผลต่างที่มากกว่าเดิม 		
อยู่นอกช่วง	หรือค่าที่ป้อนอยู่นอกช่วง		
	 ป้อนค่าที่อยู่ภายในช่วงที่ปรากฏบนส่วนแสดงผล 		
	หรือ		
	ค่าที่วัดได้อยู่นอกช่วง		
	 ตรวจสอบให้แน่ใจว่าได้ถอดฝ่าเปียกของอิเล็กโทรดออกและ ทำการเชื่อมต่ออิเล็กโทรดอย่างถูกต้องและวางลงใน สารละลายตัวอย่าง 		
รหัสผ่านไม่ถูกต้อง	PIN ที่ป้อนไม่ถูกต้อง		
	• ป้อน PIN ใหม่		
	 รีเซ็ตเป็นค่าที่ตั้งจากโรงงาน ข้อมูลและการตั้งค่าทั้งหมดจะ สูญหาย 		
รหัสผ่านไม่ตรง	PIN ที่ยืนยันไม่ตรงกับ PIN ที่ป้อน		
	• ป้อน PIN ใหม่		
ข้อผิดพลาดหน่วยความจำ โปรแกรม	เครื่องวัดค่าพบข้อผิดพลาดภายในระหว่างเริ่มใช้งาน		
	 ปิดเครื่องวัดค่าและเปิดใหม่ 		
	 ดิดด่อศูนย์บริการ METTLER TOLEDO หากยังพบปัญหานี้อยู่ 		
ข้อผิดพลาดหน่วยความจำข้อมูล	ไม่สามารถจัดเก็บข้อมูลในหน่วยความจำได้		
	 ปิดเครื่องวัดค่าและเปิดใหม่ 		
	 ดิดต่อศูนย์บริการ METTLER TOLEDO หากยังพบปัญหานี้อยู่ 		
ไม่พบข้อมูลที่ตรงกันในหน่วยความจำ	ไม่พบเกณฑ์ดัวกรองที่ป้อน		
	 ป้อนเกณฑ์ตัวกรองใหม่ 		
มี ID เซ็นเซอร์อยู่แล้ว SN เดิมจะถูกเขียน ทับ	ไม่อนุญาตเซ็นเซอร์สองตัวที่มี ID เดียวกันแต่ SN ต่างกันในเครื่อง วัดค่านี้ หากป้อน SN ที่ต่างกันใน ID เซ็นเซอร์ก่อนหน้านี้ SN เดิม จะถกเขียนทับ		
	● ป้อน ID เซ็นเซอร์อื่นเพื่อเก็บ ID และ SN เดิมไว้		
อุณหภูมิมาตรฐานอยู่นอกช่วง	การปรับเทียบการนำไฟฟ้าทำได้ที่อุณหภูมิระหว่าง 0 ถึง 35°C เท่านั้น		
	 รักษาอุณหภูมิมาตรฐานให้อยู่ภายในช่วง 		
อุณหภูมิอยู่นอกช่วงการแก้ไขค่า nLF	การวัดค่าการนำไฟฟ้าของน้ำธรรมชาติทำได้ที่อุณหภูมิระหว่าง 0 °C ถึง 36 °C เท่านั้น		
	 รักษาอุณหภูมิตัวอย่างให้อยู่ภายในช่วง 		
ช่วงอุณหภูมิอยู่นอกช่วงน้ำบริสุทธิ์	การวัดค่าการนำไฟฟ้าของน้ำบริสุทธิ์ทำได้ที่อุณหภูมิระหว่าง 0 ถึง 50 °C เท่านั้น		
	 รักษาอุณหภูมิตัวอย่างให้อยู่ภายในช่วง 		
ช่วงอุณหภูมิอยู่นอกช่วงการแก้ไขค่าเถ้า การนำไฟฟ้า	การวัดค่าเถ้าการนำไฟฟ้าทำได้ที่อุณหภูมิระหว่าง 15 ถึง 25°C เท่านั้น		
	 รักษาอุณหภูมิตัวอย่างให้อยู่ภายในช่วง 		

ข้อความ	คำอธิบายและการแก้ปัญหา	
การอัพเดตลัมเหลว	ขั้นตอนการอัพเดตซอฟต์แวร์ลัมเหลว ทั้งนี้เนื่องจากเหตุผลดังต่อ ไปนี้:	
	 USB Stick ไม่ได้เสียบอยู่หรือถูกถอดออกระหว่างขั้นตอนการ อัพเดต 	
	 ซอฟต์แวร์อัพเดตไม่ได้อยู่ในโฟลเดอร์ที่ถูกต้อง 	
การส่งออกลัมเหลว	ขั้นตอนการส่งออกลัมเหลว ทั้งนี้เนื่องจากเหตุผลดังต่อไปนี้:	
	 USB Stick ไม่ได้เสียบอยู่หรือถูกถอดออกระหว่างขั้นตอนการ ส่งออก 	
	• USB Stick เต็มแล้ว	

9.2 ขีดจำกัดข้อผิดพลาดของการนำไฟฟ้า

ช่องสัญญาณการนำไฟฟ้า

ข้อความ	ระบบไม่ยอมรับช่วง	
ค่าการนำไฟฟ้าสูงกว่าระดับที่จำกัด	การนำไฟฟ้า	< 0.00 µS/cm หรือ > 1000 mS/
		cm
TDS สูงเกินระดับที่จำกัด	TDS	< 0.00 mg/L หรือ > 1000 g/L
ค่าความเค็มสูงกว่าระดับที่จำกัด	ความเค็ม	< 0.00 psu หรือ > 80.0 psu
ค่าต้านทานไฟฟ้าสูงเกินระดับที่กำหนด	ความต้านทานไฟฟ้า	< 0.00 MΩ*cm หรือ
		> 100.0 MΩ*cm
Conductivity Ash เกินกว่าขีดจำกัดสูงสุด	เถ้าการนำไฟฟ้า	< 0.00% หรือ > 2022%
อุณหภูมิมาตรฐานอยู่นอกค่าที่ตั้งไว้	อุณหภูมิ	< 0 °C หรือ > 35 °C
อุณหภูมิสูงเกินระดับที่จำกัด	อุณหภูมิ	< -5 °C หรือ > 105 °C
อุณหภูมิออกนอกช่วงค่าถูกต้องของ มร	อุณหภูมิ	< 0°C หรือ > 50 °C
อุณหภูมิออกนอกช่วง pure water	อุณหภูมิ	< 0 °C หรือ > 50 °C
อุณหภูมิออกนอกช่วง conductivity ash ที่แก้ไข้	อุณหภูมิ	< 15 °C หรือ > 25 °C

10 เซ็นเซอร์ วิธีการแก้ปัญหา และอุปกรณ์

เซ็นเซอร์วัดค่าการนำไฟฟ้า

ชิ้นส่วน	หมายเลขสั่งชื้อ
InLab®731-ISM (เหล็ก)	30014092
InLab®741-ISM (เหล็ก)	30014094
InLab®710 (แก้ว)	51302256
InLab®720 (แก้ว)	51302255
InLab®751-4mm (เหล็ก)	51344030

สารละลายนำไฟฟ้า

ชิ้นส่วน	หมายเลขสั่งชื้อ
สารละลายมาตรฐานการนำไฟฟ้า10 µS/cm , 250 มล.	51300169
สารละลายมาตรฐานการนำไฟฟ้า 10 µS/cm, ห่อขนาด 30 x 20 มล.	30111141
สารละลายมาตรฐานการนำไฟฟ้า 84 µS/cm , 250 มล.	51302153
สารละลายมาตรฐานการนำไฟฟ้า 84 µS/cm, ห่อขนาด 30 x 20 มล.	30111140
สารละลายมาตรฐานการนำไฟฟ้า 500 µS/cm , 250 มล.	51300170
สารละลายมาตรฐานการนำไฟฟ้า 1,413 µS/cm, ห่อขนาด 30 x 20 มล.	51302049
สารละลายมาตรฐานการนำไฟฟ้า 1413 µS/cm , 6 x 250 มล.	51350096
สารละลายมาตรฐานการนำไฟฟ้า 12.88 µS/cm, ห่อขนาด 30 x 20 มล.	51302050
สารละลายมาตรฐานการนำไฟฟ้า 12.88 mS/cm / 6 x 250 มล.	51350098

คู่มือ

ขึ้นส่วน	หมายเลขการสั่ง ชื้อ
คู่มือการวัดค่าการนำไฟฟ้า	30099121

11 ข้อมูลทางเทคนิค

ทั่วไป

Screen	TFT แบบสี		
การเชื่อมต่อ	RS232	9-pin male D-sub (เครื่องพิมพ์ เครื่องอ่านบาร์โคัด แป้นพิมพ์พีซี)	
	USB-A	แฟลชไดรฟ์ USB (FAT12/FAT16/ FAT32)/เครื่องพิมพ์	
	USB-B	คอมพิวเตอร์	
Stirrer	ซ็อตเก็ต	5-pin Mini-DIN	
	ช่วงแรงดันไฟฟ้า	0.518 V 	
	ขนาดกระแสไฟ	สูงสุด 300 mA	
สภาวะแวดล้อม	อุณหภูมิแวดล้อม	540 °C	
	ความชื้นสัมพัทธ์	5…80% (ไม่ควบแน่น)	
	ประเภทแรงดันไฟฟ้าเกิน	Class II	
	ระดับการก่อมลภาวะ	2	
	ช่วงการใช้งาน	สำหรับใช้ในร่มเท่านั้น	
	ระดับความสูงสูงสุดที่สามารถใช้งาน ได้	สูงถึง 2,000 ม.	
Standards for safety and EMC	ดูเอกสารแสดงการปฏิบัติตาม มาตรฐาน		
ขนาด	ความกว้าง	204 มม.	
	ความลึก	174 มม.	
	ความสูง	74 มม.	
	น้ำหนัก	890 ก.	
เครื่องมือพิกัดไฟฟ้า	แรงดันอินพุต	9 - 12 V 	
	ความสิ้นเปลืองไฟฟ้า	2.5 W	
พิกัดไฟฟ้าอะแดปเตอร์ AC	แรงดันไฟฟ้าในสาย	100 - 240 V ~±10 %	
	ความถี่ขาเข้า	50/60 Hz	
	กระแสไฟป้อนเข้า	0.3 A	
	แรงดันเอาต์พุต	12 V 	
	กระแสไฟออก	0.84 A	
วัสดุ	ตัวเครื่อง	ABS/PC เสริมความแข็งแรง	
	หน้าต่าง	Polymethyl methacrylate (PMMA)	
	แผงปุ่มกด	แป้นพิมพ์เมมเบรน: Polyethelene terephtalate (PET)	

การวัดการนำไฟฟ้า

ช่วงการวัด	การนำไฟฟ้า	0.000 µS/cm…1000 mS/cm
	TDS	0.00 mg/L1000 g/L
	ความเค็ม	0.0080.00 psu
		0.0080.00 ppt
	ความต้านทานไฟฟ้า	0.00100.0 MΩ . cm
	ค่าการนำไฟฟ้า Ash	0.002022%
	การจับข้อมูลอุณหภูมิอัตโนมัติ	5130 °C
	การจับข้อมูลอุณหภูมิด้วยตนเอง	-30…130 °C
ความละเอียดในการวัด	การนำไฟฟ้า	ช่วงอัตโนมัติ
		0.000 µS/cm…9.999 µS/cm
		10.00 µS/cm…99.99 µS/cm
		100.0 µS/cm…999.9 µS/cm
		1000 uS/cm9999 uS/cm
		10.00 mS/cm99.99 mS/cm
		100.0 mS/cm999.9 mS/cm
		1000 mS/cm
	TDS	ช่วงอัดโนมัติ, ค่าเดียวกับกับค่าการ นำไฟฟ้า
	TDS ความเค็ม	ช่วงอัตโนมัติ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.00…80.00 psu/ppt
	TDS ความเค็ม ความต้านทานไฟฟ้า	ช่วงอัตโนมัติ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.00…80.00 psu/ppt 0.00 Ω.cm…99.99 Ω.cm
	TDS ความเค็ม ความต้านทานไฟฟ้า	ช่วงอัดโนมัติ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm
	TDS ความเค็ม ความต้านทานไฟฟ้า	ช่วงอัดโนมัติ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm9999 Ω·cm
	TDS ความเค็ม ความต้านทานไฟฟ้า	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm9999 Ω·cm 10.00 kΩ·cm99.99 kΩ·cm
	TDS ความเค็ม ความด้านทานไฟฟ้า	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm999.9 Ω·cm 10.00 kΩ·cm99.99 kΩ·cm
	TDS ความเค็ม ความต้านทานไฟฟ้า	ช่วงอัดโนมัติ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω-cm999.9 Ω·cm 10.00 kΩ·cm99.99 kΩ·cm 100.0 kΩ·cm999.9 kΩ·cm
	TDS ความเค็ม ความต้านทานไฟฟ้า	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm999.9 Ω·cm 10.00 kΩ·cm99.99 kΩ·cm 100.0 kΩ·cm999.9 kΩ·cm 1000 kΩ·cm999.9 kΩ·cm
	TDS ความเค็ม ความต้านทานไฟฟ้า	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm9999 Ω·cm 10.00 kΩ·cm99.99 kΩ·cm 1000 kΩ·cm999.9 kΩ·cm 1000 MΩ·cm99.99MΩ·cm 10.00 MΩ·cm–
	TDS ความเค็ม ความต้านทานไฟฟ้า ค่าการนำไฟฟ้า Ash	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ น่าไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm9999 Ω·cm 10.00 kΩ·cm99.99 kΩ·cm 100.0 kΩ·cm999.9 kΩ·cm 1000 kΩ·cm9999 kΩ·cm 10.00 MΩ·cm99.99MΩ·cm 100.0 MΩ·cm–
	TDS ความเค็ม ความต้านทานไฟฟ้า ค่าการนำไฟฟ้า Ash	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm9999 Ω·cm 1000 kΩ·cm99.99 kΩ·cm 100.0 kΩ·cm999.9 kΩ·cm 1000 kΩ·cm999.9 kΩ·cm 10.00 MΩ·cm99.99MΩ·cm 10.00 MΩ·cm– 0.000%9.999%
	TDS ความเค็ม ความต้านทานไฟฟ้า ค่าการนำไฟฟ้า Ash	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ นำไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm999.9 Ω·cm 10.00 kΩ·cm99.99 kΩ·cm 10.00 kΩ·cm999.9 kΩ·cm 100.0 MΩ·cm999.9 kΩ·cm 10.00 MΩ·cm99.99 MΩ·cm 10.00 MΩ·cm99.99 MΩ·cm 100.0 MΩ·cm99.99 MΩ·cm
	TDS ความเค็ม ความต้านทานไฟฟ้า ค่าการนำไฟฟ้า Ash	ช่วงอัดโนมัดิ, ค่าเดียวกับกับค่าการ น่าไฟฟ้า 0.0080.00 psu/ppt 0.00 Ω·cm99.99 Ω·cm 100.0 Ω·cm999.9 Ω·cm 1000 Ω·cm9999 Ω·cm 1000 kΩ·cm99.99 kΩ·cm 100.0 kΩ·cm999.9 kΩ·cm 1000 kΩ·cm9999 kΩ·cm 1000 MΩ·cm99.99MΩ·cm 10.00 MΩ·cm– 0.000%9999% 10.00%999.9%

ขีดจำกัดความผิดพลาด	การนำไฟฟ้า	±0.5% ของค่าที่วัดได้
	TDS	±0.5% ของค่าที่วัดได้
	ความเค็ม	±0.5% ของค่าที่วัดได้
	ความต้านทานไฟฟ้า	±0.5% ของค่าที่วัดได้
	ค่าการนำไฟฟ้า Ash	±0.5% ของค่าที่วัดได้
	อุณหภูมิ	± 0.1 °C (-5100 °C)
		± 0.5 °C (> 100 °C)
อินพุดเชนเชอร์	ัการนำไฟฟ้า	เซ็นเซอร์วัดค่าการนำไฟฟ้า Mini-
		DIN
	สัญญาณเข้าจากเซ็นเซอร์ดิจิทัล	เซ็นเซอร์ดิจิทัล Mini-LTW
การสอบเทียบ	จุดสอบเทียบ	1
	มาตรฐานการนำไฟฟ้าที่กำหนดล่วง หน้า	13
	มาตรฐานค่าการนำไฟฟ้าที่ผู้ใช้ กำหนดเอง	มี
	การป้อนค่าคงที่เซลล์แบบแมนนวล	มี

12 ภาคผนวก

12.1 มาตรฐานการนำไฟฟ้า

สากล (อ้างอิง 25°C)

T [°C]	10 µS/cm	84 µS/cm	500 µS/cm	1413 µS/cm	12.88 mS/cm
5	6.13	53.02	315.3	896	8.22
10	7.10	60.34	359.6	1020	9.33
15	7.95	67.61	402.9	1147	10.48
20	8.97	75.80	451.5	1278	11.67
25	10.00	84.00	500.0	1413	12.88
30	11.03	92.19	548.5	1552	14.12
35	12.14	100.92	602.5	1696	15.39

มาตรฐานประเทศจีน (อ้างอิง 25°C)

T [°C]	146.5 µS/cm	1408 µS/cm	12.85 mS/cm	111.3 mS/cm
15	118.5	1141.4	10.455	92.12
18	126.7	1220.0	11.163	97.80
20	132.2	1273.7	11.644	101.70
25	146.5	1408.3	12.852	111.31
35	176.5	1687.6	15.353	131.10

มาตรฐานประเทศญี่ปุ่น (อ้างอิง 20°C)

T [°C]	1330.00 µS/cm	133.00 µS/cm	26.6 µS/cm
0	771.40	77.14	15.428
5	911.05	91.11	18.221
10	1050.70	105.07	21.014
15	1190.35	119.04	23.807
20	1330.00	133.00	26.600
25	1469.65	146.97	29.393
30	1609.30	160.93	32.186
35	1748.95	174.90	34.979

สารละลาย NɑCl อิ่มตัว (อ้างอิง 25°C)

T [°C]	mS/cm
5	155.5
10	177.9
15	201.5
20	226.0
25	251.3
30	277.4
35	304.1

12.2 แฟกเตอร์แก้ไขค่าอุณหภูมิ

แฟกเตอร์แก้ไขค่าอุณหภูมิ f₂₅ สำหรับการแก้ไขค่าการนำไฟฟ้าที่ไม่เป็นเชิงเส้น

°C	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	1.918	1.912	1.906	1.899	1.893	1.887	1.881	1.875	1.869	1.863
1	1.857	1.851	1.845	1.840	1.834	1.829	1.822	1.817	1.811	1.805
2	1.800	1.794	1.788	1.783	1.777	1.772	1.766	1.761	1.756	1.750
3	1.745	1.740	1.734	1.729	1.724	1.719	1.713	1.708	1.703	1.698
4	1.693	1.688	1.683	1.678	1.673	1.668	1.663	1.658	1.653	1.648
5	1.643	1.638	1.634	1.629	1.624	1.619	1.615	1.610	1.605	1.601
6	1.596	1.591	1.587	1.582	1.578	1.573	1.569	1.564	1.560	1.555
7	1.551	1.547	1.542	1.538	1.534	1.529	1.525	1.521	1.516	1.512
8	1.508	1.504	1.500	1.496	1.491	1.487	1.483	1.479	1.475	1.471
9	1.467	1.463	1.459	1.455	1.451	1.447	1.443	1.439	1.436	1.432
10	1.428	1.424	1.420	1.416	1.413	1.409	1.405	1.401	1.398	1.384
11	1.390	1.387	1.383	1.379	1.376	1.372	1.369	1.365	1.362	1.358
12	1.354	1.351	1.347	1.344	1.341	1.337	1.334	1.330	1.327	1.323
13	1.320	1.317	1.313	1.310	1.307	1.303	1.300	1.297	1.294	1.290
14	1.287	1.284	1.281	1.278	1.274	1.271	1.268	1.265	1.262	1.259
15	1.256	1.253	1.249	1.246	1.243	1.240	1.237	1.234	1.231	1.228
16	1.225	1.222	1.219	1.216	1.214	1.211	1.208	1.205	1.202	1.199
17	1.196	1.193	1.191	1.188	1.185	1.182	1.179	1.177	1.174	1.171
18	1.168	1.166	1.163	1.160	1.157	1.155	1.152	1.149	1.147	1.144
19	1.141	1.139	1.136	1.134	1.131	1.128	1.126	1.123	1.121	1.118
20	1.116	1.113	1.111	1.108	1.105	1.103	1.101	1.098	1.096	1.093
21	1.091	1.088	1.086	1.083	1.081	1.079	1.076	1.074	1.071	1.069
22	1.067	1.064	1.062	1.060	1.057	1.055	1.053	1.051	1.048	1.046
23	1.044	1.041	1.039	1.037	1.035	1.032	1.030	1.028	1.026	1.024
24	1.021	1.019	1.017	1.015	1.013	1.011	1.008	1.006	1.004	1.002
25	1.000	0.998	0.996	0.994	0.992	0.990	0.987	0.985	0.983	0.981
26	0.979	0.977	0.975	0.973	0.971	0.969	0.967	0.965	0.963	0.961
27	0.959	0.957	0.955	0.953	0.952	0.950	0.948	0.946	0.944	0.942
28	0.940	0.938	0.936	0.934	0.933	0.931	0.929	0.927	0.925	0.923
29	0.921	0.920	0.918	0.916	0.914	0.912	0.911	0.909	0.907	0.905
30	0.903	0.902	0.900	0.898	0.896	0.895	0.893	0.891	0.889	0.888
31	0.886	0.884	0.883	0.881	0.879	0.877	0.876	0.874	0.872	0.871
32	0.869	0.867	0.866	0.864	0.863	0.861	0.859	0.858	0.856	0.854
33	0.853	0.851	0.850	0.848	0.846	0.845	0.843	0.842	0.840	0.839
34	0.837	0.835	0.834	0.832	0.831	0.829	0.828	0.826	0.825	0.823
35	0.822	0.820	0.819	0.817	0.816	0.814	0.813	0.811	0.810	0.808

12.3 ค่าสัมประสิทธิ์อุณหภูมิ (ค่าอัลฟา)

สสารที่ 25°C	ความเข้มข้น 	ค่าสัมประสิทธิ์อั ลฟาอุณหภูมิ
	[%]	[%/°C]
HCI	10	1.56
KCI	10	1.88
CH₃COOH	10	1.69
NaCl	10	2.14
H ₂ SO ₄	10	1.28
HF	1.5	7.20

- ค่าสัมประสิทธ์การนำไฟฟ้ามาตรฐานสำหรับการคำนวณไปที่อุณหภูมิอ้างอิง 25 °C

มาตรฐาน	อุณหภูมิขณะวัด ค่า: 15 °C	อุณหภูมิขณะวัด ค่า: 20 °C	อุณหภูมิขณะวัด ค่า: 30 °C	อุณหภูมิขณะวัด ค่า: 35 °C
84 µS/cm	1.95	1.95	1.95	2.01
1413 µS/cm	1.94	1.94	1.94	1.99
12.88 mS/cm	1.90	1.89	1.91	1.95

12.4 ระดับความเค็มที่ใช้จริง (UNESCO 1978)

ระดับความเค็มคำนวณตามคำจัดความอย่างเป็นทางการ UNESCO 1978 ดังนั้นค่าความเค็ม Spsu ของตัวอย่าง ในหน่วย psu (หน่วยความเค็มที่ใช้จริง) ที่ความดันบรรยากาศ คำนวณได้ดังนี้:

$$S = \sum_{j=0}^{5} \alpha_{j} R_{\scriptscriptstyle T}^{j/2} - \frac{(T{-}15)}{1{+}k(T{-}15)} \sum_{j=0}^{5} b_{j} R_{\scriptscriptstyle T}^{j/2}$$

$a_0 = 0.0080$	$b_0 = 0.0005$	k = 0.00162
a ₁ = -0.1692	$b_1 = -0.0056$	
a ₂ = 25.3851	$b_2 = -0.0066$	
a ₃ = 14.0941	$b_3 = -0.0375$	
a ₄ = -7.0261	$b_4 = 0.0636$	
a ₅ = 2.7081	b ₅ = -0.0144	

$$R_{T} = \frac{R_{Sample}(T)}{R_{KCI}(T)}$$

KCI

(32.4356 ก. KCl ต่อสารละลาย 1000 ก.)

12.5 การนำไฟฟ้าต่อแฟกเตอร์การแปลง TDS

การนำไฟฟ้า	TDS KCI		TDS NaCl	
ที่ 25 °C	ค่า ppm	แฟกเตอร์	ค่า ppm	แฟกเตอร์
84 µS/cm	40.38	0.5048	38.04	0.4755
447 µS/cm	225.6	0.5047	215.5	0.4822
1413 µS/cm	744.7	0.527	702.1	0.4969
1500 µS/cm	757.1	0.5047	737.1	0.4914
8974 µS/cm	5101	0.5685	4487	0.5000
12.880 µS/cm	7447	0.5782	7230	0.5613
15.000 µS/cm	8759	0.5839	8532	0.5688
80 mS/cm	52.168	0.6521	48.384	0.6048

12.6 ตาราง USP/EP

ข้อกำหนดค่าการนำไฟฟ้า (µS/cm) สำหรับ USP/EP (น้ำทำบริสุทธิ์สูง)/EP (น้ำทำบริสุทธิ์)

อุณหภูมิแวด ล ้อม เ°∩1	USP	EP (น้ำทำบริสุทธิ์สูง) เมร/เตาไ	EP (น้ำทำบริสุทธิ์) เมร/cm1
0	0.6	0.6	۷.4
5	0.8	0.8	-
10	0.9	0.9	3.6
15	1.0	1.0	-
20	1.1	1.1	4.3
25	1.3	1.3	5.1
30	1.4	1.4	5.4
35	1.5	1.5	-
40	1.7	1.7	6.5
45	1.8	1.8	-
50	1.9	1.9	7.1
55	2.1	2.1	-
60	2.2	2.2	8.1
65	2.42	2.42	-
70	2.5	2.5	9.1
75	2.7	2.7	9.7
80	2.7	2.7	9.7
85	2.7	2.7	-
90	2.7	2.7	9.7
95	2.9	2.9	-
100	3.1	3.1	10.2

12.7 วิธีการนำไฟฟ้า Ash"):

เครื่องวัดค่าสามารถวัดค่าการนำไฟฟ้า Ash (%) ตามวิธีการ ICUMSA มาตรฐานสองวิธีคือ

12.7.1 น้ำตาลทำบริสุทธิ์ (28 ก./สารละลาย 100 ก.) ICUMSA GS2/3-17

สูตรที่เครื่องมือใช้คือ

 $\%(m/m) = 0,0006 \cdot ((C1/(1+0,026 \cdot (T-20))) - 0,35 \cdot (C2/(1+0,026 \cdot (T-20))) \cdot K)$

- **C1** = การนำไฟฟ้าของสารละลายน้ำตาลในหน่วย µS/cm โดยค่าคงที่ของเซลล์= 1cm⁻¹
- **C2** = การนำไฟฟ้าของน้ำที่ใช้ในหน่วย µS/cm เพื่อเตรียมสารละลายน้ำตาลที่ค่าคงที่ของเซลล์ = 1 cm⁻¹
- **T** = อุณหภูมิในหน่วย °C ระหว่าง 15°C และ 25°C
- K = ค่าคงที่ของเซลล์

12.7.2 น้ำตาลดิบหรือกากน้ำตาล (5 ก. / สารละลายน้ำตาล100 มล.) ICUMSA GS 1/3/4/7/8-13

สูตรที่เครื่องมือใช้คือ

%(m/V)=0,0018 • ((C1/(1+0,023 • (T-20))-C2/(1+0,023 • (T-20))) • K)

- **C1** = การนำไฟฟ้าของสารละลายน้ำตาลในหน่วย µS/cm โดยค่าคงที่ของเซลล์ = 1 cm⁻¹
- **C2** = การนำไฟฟ้าของน้ำที่ใช้ในหน่วย µS/cm เพื่อเตรียมสารละลายน้ำตาลที่ค่าคงที่ของเซลล์ = 1 cm⁻¹
- **T** = อุณหภูมิในหน่วย °C ระหว่าง 15°C และ 25°C
- K = ค่าคงที่ของเซลล์สำหรับเซ็นเซอร์ที่ใช้

To protect your product's future: METTLER TOLEDO Service assures the quality, measuring accuracy and preservation of value of this product for years to come.

Please request full details about our attractive terms of service.

www.mt.com/phlab

สำหรับข้อมูลเพิ่มเติม

Mettler-Toledo GmbH Im Langacher 44 8606 Greifensee, Switzerland www.mt.com/contact

อาจมีการเปลี่ยนแปลงทางด้านเทคนิค. © Mettler-Toledo GmbH 04/2018 30459034A

