Introductory Handbook Volume 3

Tutorial Examples

Dr. Markus Schubnell

Disclaimer

This application handbook presents selected application examples. The experiments described were conducted with the utmost care. The results have been evaluated according to the current state of our knowledge.

This does not however absolve you from personally testing the suitability of the examples for your own methods, instruments and purposes. Since the transfer and use of an application is beyond our control, we cannot of course accept any responsibility.

Preface

Thermal analysis is the name given to a group of techniques used to determine the physical or chemical properties of a substance as it is heated, cooled or held at constant temperature. In the three-volume handbook series on Thermal Analysis in Practice we discuss various aspects of thermal analysis in general.

The first volume gives an overview on all thermal analysis techniques and shows how they can be used to measure different kinds of thermal events. The second volume is a collection of tips and hints on how to obtain the best possible results from your measurements. The present, third volume includes a brief description of all thermal analysis techniques as well as a quick guide to method development in thermal analysis. The main focus, however, is put on the discussion of typical application examples.

Together with the "Tutorial Examples" volume also a "Tutorial Kit", consisting of 17 different test samples, can be purchased. These test samples, representing a large variety of materials frequently analyzed by thermal analysis, have been measured by us. The results of these measurements, its evaluation, and its interpretation are presented in this handbook.

The experiments described in this handbook are designed to demonstrate the possibilities that modern thermal analysis offers. Some of the samples were measured and evaluated using different techniques and methods. The aim is to encourage you to experiment with the samples and in this way help you to become familiar with thermal analysis.

The samples in the "Tutorial Kit" are not certified reference substances. The evaluation results presented here are typical results obtained for the particular sample and are not scientifically guaranteed data. It is quite possible that some samples undergo slight changes during storage and might not give exactly the same results as shown in the text. We trust that this will not discourage you and hope that the measurements will serve as a source of inspiration for your own work.

I would like to thank my colleagues at METTLER TOLEDO Schwerzenbach for their help, discussions and support, in particular to Dr. Rudolf Riesen for reviewing the manuscript. Special thanks go to Dr. Dudley May for translating the German sections of the original text into English and for many helpful suggestions.

Schwerzenbach, March 2016

Dr. Markus Schubnell

Contents

1	Introd	luction to Thermal Analysis	4
	1.1	Differential Scanning Calorimetry (DSC)	4
	1.2	Thermogravimetric Analysis (TGA)	9
	1.3	Thermomechanical Analysis (TMA)	11
	1.4	Dynamic Mechanical Analysis (DMA)	13
	1.5	Simultaneous Measurements with TGA	14
2	Method Development in Thermal Analysis		17
	2.1	Introduction	17
	2.2	Step 1: Choosing the Right Measurement Technique	18
	2.3	Step 2: Sampling and Preparation of the Test Specimen	20
	2.4	Step 3: Choosing the Crucible (only DSC and TGA)	22
	2.5	Step 4: Choosing the Temperature Program	23
	2.6	Step 5: Choosing the Atmosphere	24
	2.7	Step 6: Examining the Test Specimen after the Measurement	25
	2.8	Step 7: Evaluation	26
	2.9	Step 8: Validation	26
	2.10	Conclusions	27
3	Exper	liments 3.1 to 3.23	28
	3.1	Melting Behavior of Cocoa Butter	29
	3.2	Oxidative Stability of High-Density Polyethylene	31
	3.3	Determination of the Crystallinity of Polyethylene	33
	3.4	Glass Transition of a Printed Circuit Board	35
	3.5	Glass-Fiber Content of a Printed Circuit Board by TGA	38
	3.6	Melting and Phase Transition of 4,4'-Azoxyanisole	40
	3.7	Thermal Behavior of Polyethylene Terephthalate	42
	3.8	Viscoelastic Behavior of Polyethylene Terephthalate	45
	3.9	DMA Measurements of Polyethylene Terephthalate	47
	3.10	Curing of an Epoxy Powder	49
	3.11	Specific Heat Capacity of Quartz	52
	3.12	Solid-Solid Transition of Quartz	55
	3.13	Curie Transition of Nickel	58
	3.14	Dehydration of Copper Sulfate Pentahydrate	60
	3.15	Dehydration of Copper Sulfate Pentahydrate	63
	3.16	Tightness of the TGA	66
	3.17	Decomposition of Calcium Oxalate Monohydrate	69
	3.18	Thermal Analysis of Enameled Copper Wire	71
	3.19	Coefficient of Thermal Expansion of Aluminum	73
	3.20	Rubber Analysis	75
	3.21	DMA Analysis of Butyl Rubber	77
	3.22	Glass Transition of a PCB by DMA	81
	3.23	Glass Transition of a Transparency Film	83
4	For m	ore Information	85