M100 Modbus Programmers Guide

Content

1	Genero	al Modb	us Information	3
	1.1	Docum	entation of the Modbus protocol	3
	1.2	Modbu	s testing tool	3
	1.3	Protoco	ol definitions, as implemented in M100	3
	1.4	Modbu	s RTU function codes implemented in M100	3
	1.5	Data re	presentation	3
	1.6	Addres	sing scheme	4
	1.7	Error ho	andling	5
	1.8	User le	vels, password protection	6
	1.9	Writing	registers, data retention	6
2	Implen	nented I	Modbus registers in M100	7
	2.1	M100 M	Nodbus registers	7
	2.2	Sensor	type	9
	2.3	Measu	ring channel units	. 10
3	Detaile	ed descr	ription of the implemented Modbus registers	. 11
	3.1	User le	vels and passwords	. 11
	3.2	Modbu	s register offset	. 11
	3.3	Configu	uration of the RS485 interface	. 12
	3.4	Measu	ring value page	. 13
		3.4.1	Measuring channel registers	. 13
		3.4.2	Measuring channel unit registers	. 13
		3.4.3	Sensor type registers	. 13
	3.5	Diagno	stics setup page	. 13
		3.5.1	Diagnostic registers	. 13
		3.5.2	Manipulation of diagnostic counters	. 14
	3.6	Calibra	tion page	. 16
		3.6.1	Complete calibration example of a pH sensor	. 16
		3.6.2	Setup Calibration Registers for Cal pH sensor pH	. 17
		3.6.3	Setup Calibration Registers for Cal pH sensor mV	. 18
		3.6.4	Setup Calibration Registers for Cal DO sensor %Air	. 19
		3.6.5	Setup Calibration Registers for Cal DO sensor ppm, ppb, mg/l, µg/l	. 20
		3.6.6	Setup Calibration Registers for Cal DO sensor %O2	. 21
		3.6.7	Setup Calibration Registers for Cal DO sensor %O ₂ Gas	. 22
		3.6.8	Setup Calibration Registers for Cal DO sensor ppmO ₂ Gas	. 23
		3.6.9	Setup Calibration Registers for Cal DO sensor mbar	. 24
		3.6.10	Setup Calibration Registers for Cal CO ₂ sensor pH	. 25
		3.6.11	Setup Calibration Registers for Cal CO ₂ sensor hPa, mbar, mmHg, %CO ₂ , mg/l.	. 26
		3.6.12	Setup Calibration Registers for Cal oDO sensor ppm, ppb, mg/l, µg/l	.27
		3.6.13	Setup Calibration Registers for Cal oDO sensor ppmO ₂ Gas	. 28
		3.6.14	Setup Calibration Registers for Cal ODU sensor %Air, %U2, %U2Gas, mbar.	.29
		3.6.15	Calibration units	. 30
		3.6.16	Coding calibration status.	. 31 01
		3.6.17	Calibration stability (artif control, not for process calibration)	. 31 20
		3.0.18	Calibration huffer tab	. 3Z
	•	3.0.19		. 32
4	Setting	j up the	M100	.33
	4.1	Seiting	up the MIOO IW for a DO concern	. 33
	4.2	Setting	up the MIOO IW for a CO. access	. 33
	4.J	Setting	up the M100 TW for an eDO sensor	.34 24
	4.4 1 E	Enchio	and disable Pluetoeth module	. 34 21
	4.0	LIUDIA		. 04

General Modbus Information

1

1.1 Documentation of the Modbus protocol

For detailed information about Modbus specifications, please refer to the following documents:

- Modbus_over_serial_line_V1_02.pdf

- Modbus_Application_Protocol_V1_1b3.pdf

These documents are available on the Modbus website: www.modbus.org

Go to tab "Technical Resources".

1.2 Modbus testing tool

On the web, there are plenty of Modbus testing tools or modbus libraries available for C++, Phyton or other programming languages.

For manually accessing the M100 over Modbus, for instance to predefine the Modbus address, baudrate, or other items, the tool "Modbus Poll" is a feasible choice. It can be purchased at www.modbustools.com.

1.3 Protocol definitions, as implemented in M100

Modbus mode:	RTU
Start bits:	1
Data bits:	8
Stop bits:	1
Parity:	None
Baudrate:	4800, 9600, 19200, 38400 (default), 57600, 115000
Device address:	1 (default) to 247

The device does not implement any line polarization nor any line termination. External line polarization and line termination is required.

1.4 Modbus RTU function codes implemented in M100

#3	Read Holding Registers
#4	Read Input Registers
#6	Write Single Register
#16	Write Multiple Registers

For detailed description of these functions please consult the document "Modbus_Application_Protocol_V1_1b3.pdf".

With the M100, reading any register is performed by either command #3 or #4. There is no difference in handling the information between these two commands.

1.5 Data representation

Each Modbus register contains two bytes, the data length of a command and an answer is always a multiple of two registers.

The high byte (first byte) of a register contains the last digit of a value or string, the first digit of a value or string is found on the low byte (second byte) of the last register of the interesting register chain.

The first byte of a register always contains the higher order bits, the second byte contains the lower order bits.

Decimal values:

Integer decimal values are translated to hexadecimal numbers. Non-integer decimal values are represented as single precision float values. See below for examples.

For integer 16 bit values:

Example:	A 16-bit value of 22'354.
Converted to hex:	5752
First register:	Value (bytes 1, 2): 0x5752

When using Modbus Poll select "Signed/Unsigned" to correctly interpret values.

For integer 32 bit values:

Example:	A 32-bit value of 12'345'678.
Converted to hex:	BC614E
First register:	Higher bytes of the value (bytes 1, 2): 0x00BC
Second register:	Lower bytes of the value (bytes 3, 4): 0x614E

When using Modbus Poll select "Long ABCD" to correctly interpret long values.

For float values:

The mantissa of the value is stored on the second register, its exponent in the first register. The float data format is implemented according to IEEE 754, single precision.

Example:	2.5, converted to a 32-bit float value \rightarrow (Hex value 0x40200000).
First register:	0x4020
Second register:	0x0000

When using Modbus Poll select "float ABCD" to correctly interpret float values.

For ASCII-text strings:

Same data order as for integer values.

Example:	Text sample: "Text". ASCII-code is: 0x54 0x65 0x78 0x74
First register:	0x5465
Second register:	0x7874

1.6 Addressing scheme

The addressing scheme of M100 is "Base 0" (first register number is 0).

A register offset is available on register number 0000.

Using this register offset, one can adjust the absolute starting point of the register bank to fit for instance already existing implementations.

The register offset is unsigned with a range of -32768... 32767.

For instance by setting the offset to 1, the sensor is becoming "Base 1".

By default, the register offset is set to 0, thus the first user register is on number 100.

Please note: The register offset is always found on register number 0000, independent of its value.

The offset affects only register numbers 0002 and up.

The register numbers given on the following pages are always relative numbers. The absolute number of a register is calculated by adding the register offset to the relative address.

Examples:

Register offset as default (999), the device address shall be read:

Relative register number of device address is 3096.

The effective absolute register number to be transmitted in the command is: 4095.

1.7 Error handling

Transmission errors (corrupt telegrams) are detected by the M100. Corrupt telegrams are discarded and the sensor is waiting for a next, correct telegram.

Errors on application layer are answered with an error message. In case the answer consists of an error code, the leading bit (0x80) of the function code is set, signaling the error condition.

Error code, hex	Error type
0x00	No error
0x01	Illegal function code was sent to the sensor
0x02	Illegal data address
	(invalid register number, access denied)
0x03	Illegal data value (value out of range)
0x04	Slave device error
	(operation not successfully completed)

The following error codes are implemented in the M100:

Error code 0x01 is returned when a function code other than #3, #4, #16 is sent to the sensor.

Error code 0x02 is returned in the following cases:

- Any attempts to undefined registers
- Any attempts to registers on a higher operator level then actually selected (access denied)
- When reading too many registers, so undefined registers would be attempted
- When writing too many or not enough registers at once, or on a wrong starting address

Error code 0x03 is returned when writing invalid data to a register. Invalid data means any value out of the range of the specific register (value below or above limits, value not part of a list of possible values).

In this case, the last valid data is restored on the specific Modbus register and no change is active.

Error code 0x04 is typically returned when trying to log-in to a higher user level with a wrong password or to an inexistent user level. In these cases, the log-in fail, the operation is not successfully completed.

1.8 User levels, password protection

M100 transmitters have implemented three user levels, level 0, 1 and 2. Reading registers is possible on any user level, except some specific registers used for calibration.

Writing registers of the sensor typically means changing the configuration, which also changes the behavior of the transmitter. To prevent of any unwanted configuration changes, most writing attempts are possible only on user level 2.

For all user levels, default passwords are stored in the transmitter. These passwords can be changed by the user. Changed passwords are stored in the non-volatile memory of the sensor.

User levels and default passwords of M100 transmitter:

User level	Code, hex	Default password, hex
0	0x0000003	0x0000000
1	0x000000C	0x01145DEA
2	0x0000030	0x00F479CE

After each power-up, the sensor is reset to user level 0.

When trying to change the user level to an invalid level or using a wrong password, the sensor remains on the last valid user level, error code 0x04 is returned.

1.9 Writing registers, data retention

In nearly all cases, writing any registers of the M100 means changing the configuration of the sensor. Any configuration data are stored in the non-volatile memory (FLASH) of the sensor. Thus, the changed configuration will not get lost by a power-down of the sensor.

It is a well-known fact, that FLASH memories only allows about 100'000 write attempts. By exceeding this limit, the FLASH memory might get damaged; resulting in data lost or corrupted data. A device with a damaged FLASH is no longer operable.

Attention!

The Modbus Master controller must make sure to write any configuration data only upon change and only during the commissioning phase of a system! Automatic, periodic writes of data during normal operation must be prohibited!

Exceptions:

The Salinity (register 341) and Process Pressure (register 340) are not written into the internal EEPROM and therefore have no write cycle limit.

Implemented Modbus registers in M100

2.1 M100 Modbus registers

2

Except register 0000, all register addresses are relative to the offset stored in register 0000.

Example:
Register offset is 999, as by default. Register 3288 shall be read.
The controller must read from register 4287. Default register offset is 0.

Registers sorted in ascending register number order:

Register			Access Levels		Data Type
Start- Register	Name	Count	Read	Write	
0000 fixed	Register Offset	1	0	2	int16
32	User End Firmware Version	8	0	-	string
	Measuring Value Page of attached Sensor				
100	Primary Measuring Channel	2	0	-	float32
102	Secondary Measuring Channel	2	0	-	float32
104	Tertiary Measuring Channel	2	0	-	float32
106	Quaternary Measuring Channel	2	0	-	float32
120	Primary Measuring Channel Unit**	2	0	0*	uint32
122	Secondary Measuring Channel Unit**	2	0	0*	uint32
124	Tertiary Measuring Channel Unit**	2	0	0*	uint32
126	Quaternary Measuring Channel Unit**	2	0	0*	uint32
	Diagnostics Value Page				
200	DLI	2	0	-	float32
202	ACT	2	0	-	float32
204	TTM	2	0	-	float32
206	CIP	1	0	-	uint16
208	SIP	1	0	-	uint16
210	Autoclave Counter	1	0	-	uint16
218	Flag Sensor Disconnected	1	0	-	uint16
219	Flag Wrong Sensor	1	0	-	uint16

* For persistent change of these registers unlock the M100 EEPROM first. To unlock write 0x5752 to register 3999. Otherwise changed values will be lost after the next power cycle.

** See table 2.3 Measuring Channel Units on page 10

Register			Access Levels		Data Type
Start- Register	Name	Count	Read	Write	
	M100 Transmitter Information Page				
280	Part Number	8	0	_	string
312	Serial Number	8	0	-	string
320	Manufacturer	8	0	_	string
336	Sensor Type	1	0]*	uint16
	M100 Sensor Parameter Page				
340	Process Pressure	1	0	1	uint16
341	Salinity	1	0	1	uint16
	- oDO Sensor				
350		2	0	1**	float32
350		2	0	1**	float32
35/		1	0	1**	uint16
554			0		
	– DO Sensor				
370	Polarization Voltage	1	0]**	int16
	Concer Information Dates				
	Sensor Information Page				
380	Article Number	4	0	-	string
412	Serial Number	4	0	-	string
436	Sensor Model	8	0	-	string
444	Firmware Version	9	0	-	string
	Diggnostics Setup Page				
1000	ISM CIP Counter Max	1	0	1**	uint16
1002	ISM CIP Temperature	1	0	1**	uint16
1002	ISM SIP Counter Max	1	0	1**	uint16
1006	ISM SIP Temperature	1	0	1**	uint16
1008	ISM Autoclave Counter Max	1	0	1**	uint16
1020	ISM Counter Code	1	0	1	uint16
1022	ISM Counter Write Result Code	1	0	_	uint16
1024	ISM Counter Reset	1	_	1	uint16
1026	ISM Counter Increment	1	_	1	uint16
	Calibration Page				
2000	Status Calibration	2	0	_	uint32
2004	Control Calibration	1	0	1	uint16
0010				-	
2010	Galipration Unit	2	0		UINT32

* For persistent change of these registers unlock the M100 EEPROM first. To unlock write 0x5752 to register 3999. Otherwise changed values will be lost after the next power cycle.

** EEPROM must be unlocked. Write 0x5752 to register 3999 to unlock the EEPROM.

Register		Access	Levels	Data Type	
Start-	Name	Count	Read	Write	
Register					
2012	Calibration Method	1	0	1	uint16
2013	Calibration Stability	1	0	1	uint16
2014	Calibration Buffer Tab	1	0	1	uint16
2016	Calibration Point Offset	2	0	1	float32
2018	Calibration Point Slope	2	0	1	float32
2020	Calibration Point Process	2	0	1	float32
2030	Calibration Pressure	1	0	1	uint16
2031	Calibration Salinity 1		0	1	uint16
2032	Calibration Humidity	1	0	1	uint16
2040	Check Offset	2	0	_	float32
2042	Check Slope	2	0	_	float32
2050	Calibration Date	2	0	1	uint32
2052	Calibration Time	1	0	1	uint16
	M100 Setup Page				
3096	Device Address	1	0	2*	uint16
3098	Address Limit Minimum	1	0	_	uint16
3100	Address Limit Maximum	1	0	-	uint16
3102	Baudrate	1	0	2*	uint16
3104	Baudrate Limit Minimum	1	0	-	uint16
3106	Baudrate Limit Maximum	1	0	—	uint16
3108	Uart Modus Mode	1	0	2*	uint16
3288	User Level	2	0	0	uint32
3292	User Level Passwords	2	—	2*	uint32
3300	Bluetooth Enabled	1	0	2*	uint16
3999	Unlock M100 EEPROM	1	0	0	uint16

* For persistent change of these registers unlock the M100 EEPROM first. To unlock write 0x5752 to register 3999. Otherwise changed values will be lost after the next power cycle.

** EEPROM must be unlocked. Write 0x5752 to register 3999 to unlock the EEPROM.

Note: An unlocked EEPROM becomes automatically locked after 2 minutes.

2.2 Sensor type

Sensor	Sensor Code
M100 1W pH	0x0100
M100 1W CO ₂	0x0101
M100 1W DO	0x0102
M100 RS oDO	0x0200

2.3 Measuring channel units

Units pH	Unit Code	Units DO	Unit Code
DLI	0x0001′0000	DLI	0x0002′0000
ACT	0x0001′0001	ACT	0x0002′0001
TTM	0x0001′0002	TTM	0x0002′0002
Temperature °C	0x0001′0003	Temperature °C	0x0002′0003
Temperature °F	0x0001′0004	Temperature °F	0x0002′0004
Temperature K	0x0001′0005	Temperature K	0x0002′0005
pH Value pH	0x0001′0006	O ₂ Part. Press. mbar	0x0002′0006
pH Value ORP	0x0001′0007	O ₂ Part. Press. hPa	0x0002′0007
Resistance Glass	0x0001′0008	O ₂ Part. Press. mmHg	0x0002′0008
Resistance Reference	0x0001′0009	%Air Saturation	0x0002′0009
pH Value mV	0x0001′000A	% O ₂ Concentration	0x0002′000A
pH Value V	0x0001′000B	ppm Concentration	0x0002′000B
		ppb Concentration	0x0002′000C
		ppt Concentration	0x0002′000D
		% O ₂ Gas Concentr.	0x0002′000E
		ppm O ₂ Gas Concentr.	0x0002′000F
		O ₂ Concentration g/I	0x0002′0010
		O ₂ Concentration mg/I	0x0002′0011
		O ₂ Concentration µg/I	0x0002′0012
		Process Pressure	0x0002′0013
		Amperom. Current µA	0x0002′0014
		Amperom. Current nA	0x0002′0015

Units CO ₂	Unit Code	Units oDO	Unit Code
DLI	0x0003′0000	DLI	0x0004′0000
ACT	0x0003′0001	ACT	0x0004′0001
TTM	0x0003′0002	TTM	0x0004′0002
Temperature °C	0x0003′0003	Temperature °C	0x0004′0003
Temperature °F	0x0003′0004	Temperature °F	0x0004′0004
Temperature K	0x0003′0005	Temperature K	0x0004′0005
CO ₂ Part. Press. mbar	0x0003′0006	O ₂ Part. Press. mbar	0x0004′0006
CO ₂ Part. Press. hPa	0x0003′0007	O ₂ Part. Press. hPa	0x0004′0007
CO ₂ Part. Press. mmHg	0x0003′0008	O ₂ Part. Press. mmHg	0x0004′0008
% CO ₂ Concentration	0x0003′0009	%Air saturation	0x0004′0009
CO ₂ Concentration mg/I	0x0003′000A	% O ₂ Concentration	0x0004′000A
CO ₂ ORP mV	0x0003′000B	ppm Concentration	0x0004′000B
CO ₂ UpH mV	0x0003′000C	ppb Concentration	0x0004′000C
Process Pressure mbar	0x0003′000D	ppt Concentration	0x0004′000D
CO ₂ UpH cal	0x0003′000F	% O ₂ Gas Concentr.	0x0004′000E
		ppm O ₂ Gas Concentr.	0x0004′000F
		O ₂ Concentration g/I	0x0004′0010
		O ₂ Concentration mg/I	0x0004′0011
		O ₂ Concentration µg/I	0x0004′0012
		Process Pressure	0x0004′0013

Detailed description of the implemented Modbus registers

Almost all writable registers are write protected. For persistent change of these registers unlock the M100 EEPROM first. To unlock write 0x5752 to register 3999. Otherwise changed values will be lost after the next power cycle.

Note: An unlocked EEPROM becomes automatically locked after 2 minutes.

3.1 User levels and passwords

After power-up, M100 is set to user level 0. User levels 1 or 2 can be selected by logging in with password. The password of each access level can be changed by the user.

Set user level

3

To change or check the user level, write or read relative register number 3288:

Register		Register Usage		Access User Level	
Start	Count	Register 1/2	Register 3/4	Read	Write
3288	4	User Level Code	Password	0	0
Example)	0x0000, 0x0030	0x00F4, 0x79CE		

The selected user level stays active until next power-down of the sensor. After power-up, user level 0 is active. Invalid login trials are discarded and user level 0 is activated.

Change passwords for user levels

To change the password of a user level, write relative register number 3292:

Register		Register Usage	Access User Level		
Start	Count	Register 1/2	Register 3/4	Read	Write
3292	4	User Level Code (hex)	Password (hex)	_	2
Example)	0x0000, 0x0030	0x1905, 0x0202		

Invalid user level settings are discarded and no password will be changed. Checking the valid passwords is performed by reading the user level.

3.2 Modbus register offset

By default, the Modbus register offset is defined to 0. If necessary, this offset can be changed to any number in the range of -32768...32767.

To change or check the Modbus register offset, write or read absolute register number 0000:

Register		Register Usage	Access User Level	
Start	Count	Register 1	Read	Write
0000	1	Modbus Register Offset (unsigned integer)	0	2
Example 999 (hex-value on register #1: 0x03E7)		999 (hex-value on register #1: 0x03E7)		

3.3 Configuration of the RS485 interface

The factory settings of the RS485 interface are mentioned in chapter 1.3 Protocol definitions, as implemented in M100. The device address, as well as the baudrate and the UART Mode can be adjusted to fit the needs of your installation. **Please verify the new settings by reading them back before powering the unit off. After the next power cycle, the settings will be in effect and if wrong, no further communication will be possible.**

Device address

By default, the device address is set to 1. By reading relative registers 3098 and 3100, the valid address range can be evaluated. The device address can be changed to any number within this range by writing register 3096:

Register		Register Usage		Access User Level	
Start	Count	Register 1/2		Read	Write
3096	2	Device Address (unsigned int)		0	2
3098	2	Min Address (unsigned int)		0	_
3100	2	Max Address (unsigned int)		0	_

Baudrate

By default, the baudrate is set to 38400. Relative registers 3104 and 3106 report the baudrate limits. The baudrate can be changed to any number within this range by writing register 3102:

Register		Register Usage		Access User Level	
Start	Count	Register 1/2		Read	Write
3102	2	Baudrate Code (unsigned int)		0	2
3104	2	Min. Baudrate Code (unsigned int)		0	_
3106	2	Min. Baudrate Code (unsigned int)		0	_

The baudrate is represented as a decimal code:

Baudrate	4800	9600	19200	38400	57600	115200
Code	2	3	4	5	6	7

Modbus Mode

By default, the mode is set to 8bit data, no parity, 1 stop bit (8,None,1).

Register		Register Usage		Access User Level	
Start	Count	Register 1		Read	Write
3108	1	Mode		0	2

Possible values:

0x0000	0x0001	0x0002	0x0003	0x0004	0x0005
8,None,1	8,None,2	8,Even,1	8,Even,2	8,0dd,1	8,0dd,2

3.4 Measuring value page

Register		Register Usage		Access User Level	
Start	Count	Register 1	Read	Write	
100	2	Readout measuring value of primary, secondary,	0	-	
102		tertiary and quaternary measuring channel. Float32bit			
104		value.			
106					

3.4.1 Measuring channel registers

3.4.2 Measuring channel unit registers

Register		Register Usage	Access Us	ser Level	
Start	Count	Register 1	Read	Write	
120 122 124 126	2	Setup measuring channel unit of primary, secondary, tertiary and quaternary measuring channel. uint32bit value see 2.3 Measuring channel units for correspond- ing sensor type. For persistent change of the channel unit please unlock the eeprom fist.	0	0	

Attention: Channel unit must correspond to the attached sensor type.

3.4.3 Sensor type registers

Register		Register Usage	Access User Level	
Start	Count	Register 1	Read	Write
336	1	Setup type of attached sensor on the M100. uint16bit value see 2.2 Sensor type for sensor specific coding. For persistent change of the channel unit please unlock the eeprom fist.	0	0

3.5 Diagnostics setup page

3.5.1 Diagnostic registers

Set maximum CIP counter

Register		Register Usage		Access User Level	
Start	Count	Register 1	Read	Write	
1000	1	Setup CIP Counter Max. uChar 8bit value	0	1	

Set CIP temperature

Register		Register Usage	Access User Level	
Start	Count	Register 1	Read	Write
1002	1	Setup CIP Counter Temperature. uChar 8bit value [°C]	0	1

Set maximum SIP counter

Register		Register Usage	Access User Level	
Start	Count	Register 1	Read	Write
1004	1	Setup SIP Counter Max. uChar 8bit value	0	1

Set SIP temperature

Register		Register Usage		Access User Level	
Start	Count	Register 1	Read	Write	
1006	1	Setup SIP Counter Temperature. uChar 8bit value [°C]	0	1	

Set maximum Autoclave counter

Register		Register Usage	Access User Level	
Start	Count	Register 1	Read	Write
1008	1	Setup Autoclave Counter Max. uChar 8bit value	0	1

3.5.2 Manipulation of diagnostic counters

The diagnostic counters can be modified. To modify a diagnostic counter, the counter to be modified is selected by writing the desired counter code into register 1020.

Available Counters	Code
SIP	0x01
CIP	0x02
Autoclaving	0x03
ACT	0x05
DLI	0x06
TTM	0x07

Now select the counter to be modified and send the corresponding code to register 1020.

Setup counter code

Register		Register Usage	Access User Level	
Start	Count	Register 1	Read	Write
1020	1	Setup ISM Counter Code	0	1

The status of the manipulation is shown in the ISM setup counter write result code register 1022. Before any manipulation this register should be idle. The following table shows the possible status codes available for register 1022.

Status ISM Manipulations of Register 1022	Code
Idle	0x00
Counter Reset in Progress	0x01
Counter Reset Failed	0x02
Counter Not Allowed For This Sensor	0x80
Counter Reset No Sensor Present	0x81
Counter Reset Wrong Code	0x82
Counter Reset Busy	0x83

Read status of counter manipulation

Register		Register Usage	Access User Level	
Start	Count	Register 1	Read	Write
1022	1	ISM Setup Counter Write Result Code	0	-

If the counter status in register 1022 is Idle, the counter previously selected with register 1020 can be either reset by writing 0x01 to register 1024 or incremented by writing 0x01 to register 1026.

Note: Not all counters can be incremented, some can only be reset.

Manipulation	Sensor Type
CIP Reset	рН, CO ₂ , DO, oDO
SIP Reset	pH, CO ₂ , DO, oDO
DLI Reset	DO, oDO
TTM Reset	рН, СО ₂ , DO
Autoclave Reset	pH, CO ₂ , DO, oDO
Autoclave Increment	pH, CO ₂ , DO, oDO

Setup counter reset

Register		Register Usage		Access User Level	
Start	Count	Register 1	Read	Write	
1024	1	ISM Setup Counter Reset	-	1	

Setup counter increment

Register		Register Usage		Access User Level	
Start	Count	Register 1	Read	Write	
1026	1	ISM Setup Counter Increment	-	1	

After writing a 0x01 to either register 1024 or 1026, the writing process can be monitored when reading register 1022 as described above.

3.6 Calibration page

The M100 calibration is done with a standard procedure which remains the same for all sensors. Therefore, the procedure has to be implemented only once. Only the setup of the calibration registers will change, when another sensor is calibrated.

Below there is an example of a complete pH calibration procedure (3.6.1). For all other calibrations, the procedure remains the same except for the "Setup Calibration Register" setup box. This box is explained in the chapter 3.6.2 and following.

Also the meaning of errors and status registers is explained in tables after the calibration examples.

3.6.1 Complete calibration example of a pH sensor

3.6.2 Setup Calibration Registers for Cal pH sensor pH

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0001′0006	2010	рН
Calibration Method			Range
Offset	0x01	2012	–216 pH
Slope	0x02	2012	
Process Offset	0x10	2012	
Process Slope	0x20	2012	
Calibration Stability			
Manual	0x01	2013	
Low	0x02*	2013	1.25 mV
Medium	0x04*	2013	0.8 mV
Strict	0x08*	2013	0.4 mV
Calibration Buffer Tab			
None	0x0001	2014	_
	(none use Reg 2016/ 2018/2020)		
All	0x0002	2014	See Calibration Buffer Tab below
Calibration Point			
Offset	7.0 pH	2016	Insert actual value
Slope	4.0 pH	2018	as floating point
Process	7.51 pH	2020	number
Calibration			
Pressure	none	2030	—
Humidity	none	2032	—
Salinity	none	2031	
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* pH criteria: 20 s interval within 300 s

Example:

Calibration of a pH Sensor pH, offset calibration, manual stability, buffer tab none, 7.00 pH offset, on September 30th 2016, 15h30

Write the following values to the registers:

0x0001′0006	\rightarrow	2010
0x01	\rightarrow	2012
0x01	\rightarrow	2013
0x0001	\rightarrow	2014
7.0 (IEEE float)	\rightarrow	2016 & 2017
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052

After this setup, start the calibration by sending: $0x0001 \rightarrow 2004$

3.6.3 Setup Calibration Registers for Cal pH sensor mV

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0001′0007	2010	mV
Calibration Method			Range
Offset	0x01	2012	–1500 mV1500 mV
Process Offset	0x10	2012	
Calibration Stability			
Manual	0x01	2013	
Calibration Buffer Tab			
	0x0001	2014	—
None	(none use Reg		
	2016/2020)		
Calibration Point			
Offset	–15.5 mV	2016	Insert actual value
Process	+45.3 mV	2020	as floating point
			number
Calibration			
Pressure	none	2030	—
Humidity	none	2032	—
Salinity	none	2031	—
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

Example:

Calibration of a pH Sensor mV, process offset calibration, manual stability, buffer tab none, +45.3 mV process offset, on September 30th 2016, 15h30

Write the following values to the registers:

0x0001′0007	\rightarrow	2010
0x10	\rightarrow	2012
0x01	\rightarrow	2013
0x0001	\rightarrow	2014
45.3 (IEEE float)	\rightarrow	2020 & 2021
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052

After this setup, start the calibration by sending: $0x0001 \rightarrow 2004$

3.6.4 Setup Calibration Registers for Cal DO sensor %Air

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0002′0009	2010	%Air
Calibration Method			Range
Offset	0x01	2012	05%Air
Slope	0x02	2012	5 500 %Air
Process Offset	0x10	2012	05%Air
Process Slope	0x20	2012	5 500 %Air
Calibration Stability			
Manual	0x01	2013	Manual
Auto	0x10*	2013	Auto
Calibration Buffer Tab			
None	0x0001	2014	—
Calibration Point			
Offset	3.0 % Air	2016	Insert actual value
Slope	100.0 % Air	2018	as floating point
Process	21.2 % Air	2020	number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	50	2032	50 %
Salinity	none	2031	—
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* D0 criteria: 60 s interval within 300 s: $|nA_{max} - nA_{min}| \le \frac{nA_{act}}{256}$ (only for 1-point slope)

Example:

Calibration of a DO Sensor %Air, offset calibration, manual stability, 3 % offset, pressure 1008 mbar, humidity 45 %, on September 30th 2016. 15h30

Write the following values to the registers:

0x0002′0009	\rightarrow	2010
0x01	\rightarrow	2012
0x01	\rightarrow	2013
0x0001	\rightarrow	2014
3.0 (IEEE float)	\rightarrow	2016 & 2017
1008	\rightarrow	2030
45	\rightarrow	2032
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052
After this setup,	stai	rt the calibration by sending:

3.6.5 Setup Calibration Registers for Cal DO sensor ppm, ppb, mg/l, µg/l

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0002′000B	2010	ppm
	0x0002'000C	2010	ppb
	0x0002′0011	2010	mg/l
	0x0002′0012	2010	µg/l
Calibration Method			Range
Offset	0x01	2012	070 ppm
Slope	0x02	2012	
Process Offset	0x10	2012	070 mg/l
Process Slope	0x20	2012	
Calibration Stability			
Manual	0x01	2013	Manual
Auto	0x10*	2013	Auto
Calibration Buffer Tab			
None	0x0001	2014	_
Calibration Point			
Offset	0.5 ppm	2016	Insert actual value
Slope	65.0 mg/l	2018	as floating point
Process	55.6 mg/l	2020	number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	50	2032	
Salinity	10 g/l	2031	10 g/l
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* DO criteria: 60 s interval within 300 s: $|nA_{max} - nA_{min}| \le \frac{nA_{act}}{256}$ (only for 1-point slope)

Example:

Calibration of a DO Sensor mg/l, offset calibration, auto stability, 0.48 mg/l offset, pressure 1018 mbar, salinity 10 g/l, on September 30th 2016, 15h30

Write the following values to the registers:

0x0002′0011	\rightarrow	2010
0x01	\rightarrow	2012
0x10	\rightarrow	2013
0x0001	\rightarrow	2014
0.48 (IEEE float) →	2016 & 2017
1018	\rightarrow	2030
10	\rightarrow	2031
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052
After this setup,	start	the calibration by sending:
0x0001	\rightarrow	2004

3.6.6 Setup Calibration Registers for Cal DO sensor %02

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0002′000A	2010	%0 ₂
Calibration Method			Range
Offset	0x01	2012	0 1.05 %0 ₂
Slope	0x02	2012	1.05 100 %0 ₂
Process Offset	0x10	2012	0 1.05 %0 ₂
Process Slope	0x20	2012	1.05 100 %0 ₂
Calibration Stability			
Manual	0x01	2013	Manual
Auto	0x10*	2013	Auto
Calibration Buffer Tab			
None	0x0001	2014	—
Calibration Point			
Offset	0.75 %O ₂	2016	Insert actual value
Slope	95.7 %O ₂	2018	as floating point
Process	21.2 %0 ₂	2020	number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	50	2032	50 %
Salinity	none	2031	—
Calibration			
Date	0x2809'2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* D0 criteria: 60 s interval within 300 s: $|nA_{max} - nA_{min}| \le \frac{nA_{act}}{256}$ (only for 1-point slope)

Example:

Calibration of a DO Sensor $\%O_2$, slope calibration, manual stability, 99.2 $\%O_2$ slope, pressure 1001 mbar, humidity 47 %, on September 30th 2016, 15h30

Write the following values to the registers:

0x0002′000A	\rightarrow	2010
0x02	\rightarrow	2012
0x01	\rightarrow	2013
0x0001	\rightarrow	2014
99.2 (IEEE float)→	2018 & 2019
1001	\rightarrow	2030
47	\rightarrow	2032
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052
After this setup,	star	t the calibration by sending:
0,0001		2004

3.6.7 Setup Calibration Registers for Cal DO sensor %O₂Gas

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

	1	1
Value	Modbus Register #	Unit/Command
0x0002′000E	2010	%0 ₂ Gas
		Range
0x02	2012	1.05 100 %0 ₂ Gas
0x20	2012	1.05 100 %0 ₂ Gas
0x01	2013	Manual
0x10*	2013	Auto
0x0001	2014	—
95.7 %0 ₂ Gas	2018	Insert actual value
21.2 %0 ₂ Gas	2020	as floating point number
1013	2030	1013 mbar
50	2032	50%
none	2031	_
0x2809′2016	2050	Date 28.09.2016
0x1733	2052	Time 17h33
	Value 0x0002′000E 0x02 0x20 0x01 0x10* 0x0001 95.7 %02Gas 21.2 %02Gas 1013 50 none 0x2809′2016 0x1733	Value Modbus Register # 0x0002'000E 2010 0x02 0x20 2012 2012 0x01 0x10* 2013 2013 0x0001 2014 95.7 %02Gas 21.2 %02Gas 2018 2020 1013 50 2030 2032 none 0x2809'2016 0x1733 2050 2052

* DO criteria: 60 s interval within 300 s: $|nA_{max} - nA_{min}| \le \frac{nA_{act}}{256}$ (only for 1-point slope)

Example:

Calibration of a DO Sensor O_2 Gas, slope calibration, manual stability, 99.2 O_2 Gas slope, pressure 1001 mbar, humidity 47 O_2 , on September 30th 2016, 15h30

Write the following values to the registers:

0x0002′000E	\rightarrow	2010
0x02	\rightarrow	2012
0x01	\rightarrow	2013
0x0001	\rightarrow	2014
99.2 (IEEE float	ť) →	2018 & 2019
1001	\rightarrow	2030
47	\rightarrow	2032
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052

After this setup, start the calibration by sending:

3.6.8 Setup Calibration Registers for Cal DO sensor ppmO₂Gas

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0002′000F	2010	ppmO ₂ Gas
Calibration Method			Range
Offset	0x01	2012	09999 ppm0 ₂ Gas
Process Offset	0x10	2012	
Calibration Stability			
Manual	0x01	2013	Manual
Calibration Buffer Tab			
None	0x0001	2014	—
Calibration Point			
Offset	70.0 ppmO ₂ Gas	2016	Insert actual value
Process Offset	45.0 ppmO ₂ Gas	2020	as floating point number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	50	2032	50%
Salinity	none	2031	—
Calibration			
Date	0x2809'2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Example:

Calibration of a DO Sensor ppmO₂Gas, offset calibration, manual stability, 70.0 ppmO₂Gas offset, pressure 1013 mbar, humidity 47 %, on September 30th 2016, 15h30

Write the following values to the registers:

0x0002′000F	\rightarrow	2010
0x01	\rightarrow	2012
0x01	\rightarrow	2013
0x0001	\rightarrow	2014
70.0 (IEEE float)) →	2016 & 2017
1013	\rightarrow	2030
47	\rightarrow	2032
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052
After this setup,	star	t the calibration by sending:

3.6.9 Setup Calibration Registers for Cal DO sensor mbar

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0002′0006	2010	mbar
Calibration Method			Range
Offset	0x01	2012	0630 mbar
Slope	0x02	2012	
Process Offset	0x10	2012	
Process Slope	0x20	2012	
Calibration Stability			
Manual	0x01	2013	Manual
Auto	0x10*	2013	Auto
Calibration Buffer Tab			
None	0x0001	2014	<u> </u>
Calibration Point			
Offset	15.0 mbar	2016	Insert actual value
Slope	625.0 mbar	2018	as floating point
Process	320.0 mbar	2020	number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	none	2032	—
Salinity	none	2031	<u> </u>
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* DO criteria: 60 s interval within 300 s: $|nA_{max} - nA_{min}| \le \frac{nA_{act}}{256}$ (only for 1-point slope)

Example:

Calibration of a DO Sensor mbar, slope calibration, manual stability, 625.0 mbar slope, pressure 1001 mbar, on September 30th 2016, 15h30

Write the following values to the registers:

0x0002′0006	→ 2010
0x02	→ 2012
0x01	→ 2013
0x0001	→ 2014
625.0 (IEEE float)	→ 2018 & 2019
1001	→ 2030
0x2809′2016	→ 2050 & 2051
0x1530	→ 2052

After this setup, start the calibration by sending:

3.6.10 Setup Calibration Registers for Cal CO₂ sensor pH

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0003′000F	2010	pН
Calibration Method			Range
Offset	0x01	2012	–2 16 pH
Slope	0x02	2012	–2 16 рН
Calibration Stability			
Manual	0x01	2013	Manual
Low	0x02*	2013	1.25 mV
Med	0x04*	2013	0.8 mV
Strict	0x08*	2013	0.4 mV
Calibration Buffer Tab			
None	0x0001	2014	—
	(none use Reg 2016/		
	2018/2020)		
MT-9	0x0002	2014	Select MT-9 Buffer
Calibration Point			
Offset	7.0	2016	Insert actual value
Slope	4.0	2018	as floating point
			number
Calibration			
Pressure	none	2030	—
Humidity	none	2032	—
Salinity	none	2031	—
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* pH criteria: 20 s interval within 300 s

Example:

Calibration of a CO₂ Sensor pH, offset calibration, manual stability, buffer tab none, 7.02 pH offset, on September 30th 2016, 15h30

Write the following values to the registers:

0x0003′000F	→ 2010
0x01	→ 2012
0x01	→ 2013
0x0001	→ 2014
7.02 (IEEE float)	→ 2016 & 2017
0x2809′2016	→ 2050 & 2051
0x1530	→ 2052
-	

After this setup, start the calibration by sending:

3.6.11 Setup Calibration Registers for Cal CO₂ sensor hPa, mbar, mmHg, %CO₂, mg/l

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0003′0007	2010	hPa
	0x0003′0006	2010	mbar
	0x0003′0008	2010	mmHg
	0x0003′0009	2010	%CO ₂
	0x0003′000A	2010	mg/l
Calibration Method			Range
Process Offset	0x10	2012	02000 hPa
			02000 mbar
			01500 mmHg
			0200%CO ₂
			05000 mg/l
Calibration Stability			
Manual	0x01	2013	Manual
Calibration Buffer Tab			
None	0x0001	2014	
	(none use Reg 2020)		
Calibration Point			
Process Offset	120.0 hPa	2020	Insert actual value as
			floating point number
Calibration			
Pressure	none*	2030	
Humidity	none	2032	
Salinity	none	2031	—
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* For a CO₂ process calibration, the process pressure Modbus Register 340 has to be correct.

Example:

Calibration of a CO₂ Sensor %CO₂, process offset calibration, manual stability, buffer tab none, 190.5 %CO₂, process pressure 1013 mbar, on September 30th 2016, 15h30

Write the following values to the registers:

0x0003′0009	→ 2010	
0x10	→ 2012	
0x01	→ 2013	
0x0001	→ 2014	
190.5 (IEEE floa	at) → 2020 & 2021	
0x2809′2016	→ 2050 & 2051	
0x1530	→ 2052	
1013	→ 340*	
** ** **		

* %CO₂ only

After this setup, start the calibration by sending: $0x0001 \rightarrow 2004$

3.6.12 Setup Calibration Registers for Cal oDO sensor ppm, ppb, mg/l, µg/l

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0004′000B	2010	ppm
	0x0004′000C	2010	ppb
	0x0004′0011	2010	mg/l
	0x0004′0012	2010	µg/l
Calibration Method			Range
Offset*	0x01	2012	0 mg/l, 0 ppb
Slope	0x02	2012	8.24 mg/l, 8240 ppb
Process Slope	0x20	2012	045 mg/l, ppm
			045′000 µg/l, ppb
Calibration Stability			
Manual	0x01	2013	Manual
Auto	0x10**	2013	Auto
Calibration Buffer Tab			
None	0x0001	2014	_
	(none use Reg		
	2016/2018/2020)		
Calibration Point			
Offset	0	2016	Insert actual value
Slope	8.24	2018	as floating point
Process	9.55	2020	number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	none	2032	_
Salinity	10	2031	10 g/l
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

* For 2-point calibration only. First perform a slope calibration. When the M100 responses with a successful calibration then start the offset calibration.

** Timeout for 100 %Air max. 600 s, for N₂(Zero) 3600 s.

Example:

Calibration of an oDO Sensor mg/l, slope calibration, auto stability, 0.48 mg/l offset, pressure 1018 mbar, salinity 10g/l, on September 30th 2016, 15h30

	0	0		
0x0004′0011	→ 2010			
0x02	→ 2012			
0x10	→ 2013			
0x0001	→ 2014			
0.48 (IEEE float	\rightarrow 2016 & 2	2017		
1018	→ 2030			
10	→ 2031			
0x2809′2016	→ 2050 & 2	2051		
0x1530	→ 2052			

Write the following values to the registers:

After this setup, start the calibration by sending: $0x0001 \rightarrow 2004$

3.6.13 Setup Calibration Registers for Cal oDO sensor ppmO₂Gas

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0004′000F	2010	ppmO ₂ Gas
Calibration Method			Range
Process Offset	0x10	2012	09999 ppm0 ₂ Gas
Calibration Stability			
Manual	0x01	2013	Manual
Calibration Buffer Tab			
None	0x0001	2014	—
	(none use Reg		
	2016/2018/2020)		
Calibration Point			
Process Offset	70.5 ppm	2020	Insert actual value as
			floating point number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	none	2032	—
Salinity	none	2031	—
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

Example:

Calibration of an oDO Sensor $ppmO_2Gas$, process offset calibration, manual stability, 70.5 $ppmO_2Gas$ process offset, pressure 1018 mbar, on September 30th 2016, 15h30

Write the following values to the registers:

0x0004′000F	\rightarrow	2010
0x10	\rightarrow	2012
0x01	\rightarrow	2013
0x0001	\rightarrow	2014
70.5 (IEEE float)) →	2020 & 2021
1018	\rightarrow	2030
0x2809′2016	\rightarrow	2050 & 2051
0x1530	\rightarrow	2052
After this setup,	star	t the calibration by sending:

3.6.14 Setup Calibration Registers for Cal oDO sensor %Air, %O₂, %O₂Gas, mbar

The table describes the same values of the box Setup Calibration Registers in 3.6.1 Setup Calibration Registers:

Item	Value	Modbus Register #	Unit/Command
Calibration Unit	0x0004′0009	2010	%Air
	0x0004′000A	2010	%0 ₂
	0x0004′000E	2010	%O ₂ Gas
	0x0004′0006	2010	mbar
Calibration Method			Range
Offset*	0x01	2012	0 %Air, %O ₂ , mbar
Slope	0x02	2012	100 %Air, 20.95 %O ₂
			230 mbar
Process Slope	0x20	2012	0300 %Air
			0 63 %0 ₂ , 0 ₂ Gas
			0630 mbar
Calibration Stability			
Manual	0x01	2013	Manual
Auto	0x10**	2013	Auto
Calibration Buffer Tab			
None	0x0001	2014	—
	(none use Reg		
	2016/2018/2020)		
Calibration Point			
Offset	0	2016	Insert actual value
Slope	20.95	2018	as floating point
Process	30.0	2020	number
Calibration			
Pressure	1013	2030	1013 mbar
Humidity	45 %	2032	45 %
Salinity	none	2031	—
Calibration			
Date	0x2809′2016	2050	Date 28.09.2016
Time	0x1733	2052	Time 17h33

* For 2-point calibration only. First perform a slope calibration. When the M100 responses with a successful calibration then start the offset calibration.

** Timeout for 100 %Air max. 600 s, for $N_2(\mbox{Zero})$ 3600 s.

Example:

Calibration of an oDO Sensor %Air, process slope calibration, auto stability, 99.5 %Air process cal, pressure 1018 mbar, humidity 45 %, on September 30th 2016, 15h30

Write the following values to the registers:

0x0004′0009	\rightarrow	2010
0x20	\rightarrow	2012
0x10	\rightarrow	2013
0x0001	\rightarrow	2014
99.5 (IEEE float)	-	2020 & 2021
1018	\rightarrow	2030
45	\rightarrow	2032
0x2809′2016		2050 & 2051
0x1530	\rightarrow	2052
		the estimation by conding

After this setup, start the calibration by sending: $0x0001 \rightarrow 2004$

3.6.15 Calibration units

Sensor	Unit	Code
рН	рН	0x00010006
рН	ORP	0x00010007
DO	%Air	0x00020009
DO	ppm	0x0002000B
DO	ppb	0x0002000C
DO	mg/l	0x00020011
DO	µg/I	0x00020012
DO	%0 ₂	0x0002000A
DO	%0 ₂ G	0x0002000E
DO	ppmO ₂ G	0x0002000F
DO	mbar	0x00020006
CO ₂	рН	0x0003000F
CO ₂	hPa	0x00030007
CO ₂	mbar	0x00030006
CO ₂	mmHg	0x00030008
CO ₂	%CO ₂	0x00030009
CO ₂	mg/l	0x0003000A
oDO	%Air	0x00040009
oDO	ppm	0x0004000B
oDO	ррb	0x0004000C
oDO	mg/l	0x00040011
oDO	µg/l	0x00040012
oDO	%0 ₂	0x0004000A
oDO	%0 ₂ G	0x0004000E
oDO	ppmO ₂ G	0x0004000F
oDO	mbar	0x00040006

Calibration status	all/RO
Idle	0x0000'0001
Calibration Done	0x0000'0002
Calibration In Progress	0x0000'0004
Calibration Ready To Check	0x0000'0008
Calibration Write Data In Progress	0x0000'0010
Spare	0x0000'0020
Spare	0x0000'0040
Calibration Not Done	0x0000'0080
No Sensor	0x0000'0100
Wrong Sensor Type	0x0000'0200
Wrong Calibration Unit	0x0000'0400
Wrong Calibration Method	0x0000'0800
Wrong Calibration Stability	0x0000'1000
Wrong Calibration Buffer	0x0000'2000
Wrong Calibration Points (out of edit range)	0x0000'4000
Stability Timeout 300 s	0x0000'8000
No Calibration Data to Write	0x0001'0000
Cal Out of Limit, continue?	0x0002'0000
Write Error	0x0004'0000
Spare	0x0008'0000
Buffer Recognize Failed	0x0010'0000
Spare	0x0020'0000
(pH)2pnt Cal Difference between Cal Point < 60 mV	0x0040'0000
Spare	0x0080'0000
Spare	0x0100'0000
(oDO)PhiO is Out of Range	0x0200'0000
(oDO)Phi100 is Out of Range	0x0400'0000
(oDO)deltaPhi is Out of Range	0x0800'0000
(oDO)KSV is Out of Range	0x1000'0000
(oDO)Perform Slope Cal First	0x2000'0000
Spare	0x4000'0000
Spare	0x8000'0000

3.6.16 Coding calibration status

3.6.17 Calibration stability (drift control, not for process calibration)

Description	Value	рH	C02	DO	oDO
Manual	0x01				
Low	0x02	1.25 mV*	1.25 mV*	NA	NA
Medium	0x04	0.8 mV*	0.8 mV*	NA	NA
Strict	0x08	0.4 mV*	0.4 mV*	NA	NA
Auto	0x10	NA	NA	**	***

* 20 s stable interval within a 300 s timeout

** 60 s stable interval within a 300 s timeout

*** Timeout for 100 %Air max 600 s, for $N_2(\text{Zero})$ 3600 s

3.6.18 Calibration method

	all/RW
1-point Calibration Offset	0x01
1-point Calibration Slope	0x02
1-point Process Calibration Offset	0x10
1-point Process Calibration Slope	0x20

3.6.19 Calibration buffer tab

Туре	pH/CO ₂
None	0x0001
(use register 2016/2017/2018 instead)	
MT-9	0x0002
MT-10	0x0004
NIST Tech	0x0008
NIST Std	0x0010
HACH	0x0020
CIBA	0x0040
MERCK	0x0080
WTW	0x0100
JIS Z 8802	0x0200
Na+ 3.9M	0x0400

Setting up the M100 4

Setting up the M100 1W for a pH sensor 4.1

Example:

Set up M100 for a pH sensor, select pH/°C for primary and secondary measuring channel, observe Dynamic Lifetime Indicator (DLI) and Time To Maintenance (TTM) on the tertiary and quaternary measuring channel.

Write the following values to the registers:

0x5752	\rightarrow	3999	unlock eeprom
0x0000′000C	\rightarrow	3288	
0x0114′5DEA	\rightarrow	3290	get user level 1
0x0100	\rightarrow	336	change sensor type to M100 1W pH
0x0001′0006	\rightarrow	120	select primary channel units to pH
0x0001′0003	\rightarrow	122	select secondary channel units to °C
0x0001′0000	\rightarrow	124	select tertiary channel units to DLI
0x0001′0002	\rightarrow	126	select quaternary channel units to TTM

Read register 100/102/104/106 for float value of primary, secondary, tertiary and quaternary measuring channel.

4.2 Setting up the M100 1W for a DO sensor

Example:

Set up M100 for a DO sensor, select mbar/°C for primary and secondary measuring channel, observe Dynamic Lifetime Indicator (DLI) and Time To Maintenance (TTM) on the tertiary and quaternary measuring channel.

Write the following values to the registers:			
0x5752	\rightarrow	3999	unlock eeprom
0x0000′000C	\rightarrow	3288	
0x0114′5DEA	\rightarrow	3290	get user level 1
0x0102	\rightarrow	336	change sensor type to M100 1W DO
0x0002′0006	\rightarrow	120	select primary channel units to mbar
0x0002′0003	\rightarrow	122	select secondary channel units to °C
0x0002′0000	\rightarrow	124	select tertiary channel units to DLI
0x0002′0002	-	126	select quaternary channel units to TTM

Read register 100/102/104/106 for float value of primary, secondary, tertiary and quaternary measuring channel.

4.3 Setting up the M100 1W for a CO₂ sensor

Example:

Set up M100 for a CO₂ sensor, select mbar/°C for primary and secondary measuring channel, observe Dynamic Lifetime Indicator (DLI) and Time To Maintenance (TTM) on the tertiary and quaternary measuring channel.

	-		
0x5752	\rightarrow	3999	unlock eeprom
0x0000′000C	\rightarrow	3288	
0x0114′5DEA	\rightarrow	3290	get user level 1
0x0101	\rightarrow	336	change sensor type to M100 1W CO2
0x0003′0006	\rightarrow	120	select primary channel units to mbar
0x0003′0003	\rightarrow	122	select secondary channel units to °C
0x0003′0000	\rightarrow	124	select tertiary channel units to DLI
0x0003′0002	\rightarrow	126	select quaternary channel units to TTM

Read register 100/102/104/106 for float value of primary, secondary, tertiary and quaternary measuring channel.

4.4 Setting up the M100 1W for an oDO sensor

Example:

Set up M100 for a oDO sensor, select %Air/°C for primary and secondary measuring channel, observe Dynamic Lifetime Indicator (DLI) and Adaptive Calibration Timer (ACT) on the tertiary and quaternary measuring channel.

Ox5752	\rightarrow	3999	unlock eeprom
0000,0000xC	\rightarrow	3288	
0x0114′5DEA	\rightarrow	3290	get user level 1
0x0200	\rightarrow	336	change sensor type to M100 RS oD
0x0004′0009	\rightarrow	120	select primary channel units to %Air
0x0004′0003	\rightarrow	122	select secondary channel units to °C
0x0004′0000	\rightarrow	124	select tertiary channel units to DLI
0x0004′0001	\rightarrow	126	select quaternary channel units to ACT

Write the following values to the registers:

Read register 100/102/104/106 for float value of primary, secondary, tertiary and quaternary measuring channel.

4.5 Enable and disable Bluetooth module

In order to increase operational security of the M100, the Bluetooth module may be disabled.

Register	r	Register Usage	Access Us	ser Level
Start	Count	Register 1	Read	Write
3000	1	Bluetooth enabled/disabled	0	2

Bluetooth status	Code
Bluetooth Disabled	0x0000
Bluetooth Enabled	0x0001

Notes

The information you want is at www.mt.com/pro

The METTLER TOLEDO Process Analytics website contains a vast amount of up-to-date information on all our products and services. Content is localized for your country and tailored to suit your selections. Simple layout allows you to quickly find the information and features you are looking for.

- Learn about our most recent product developments
 Register for free webinars
- Request further information on products and services
- Obtain a quote quickly and easily
- Download our latest white papers
- Read case studies relevant to your industry
- Access buffer and electrolyte solution certificate
- \bullet and more \ldots

www.mt.com/pro

Visit for more information

METTLER TOLEDO Group

Process Analytics Im Hackacker 15 CH-8902 Urdorf

Local contacts: www.mt.com/pro-MOs

Subject to technical changes © 06/2019 METTLER TOLEDO. All rights reserved UR8001en C/eVersion only MarCom Urdorf, CH