

Intelligent Software

Evaluating Thermal Risk Streamline Safety Analysis

Name		Value	Value
	gr = gflow_hf + gacou + gdos	123 kJ	
	Dosed amount of 'Propionic Anhydride'	2.115 mol	275.2 g
	Molar enthalpy per 'Propionic Anhydride'	58.16 kJ/mol	
	Specific enthalpy per 'Propionic Anhydride'	446.9 k1/kg	
He	at Removal		
ame		Value	Value
	q_removal = gfow_hf + gaccu	113.7 kJ	
	Specific heat removal	267.2 kJ/kg	249 kJ/I
	Specific Heat removal rate	Mean Value	Max Value
	During reaction time (integration range)	108 W/I	2787 W/
	During Dosing 1: 275.22 g at 17.95 g/min Propionic Anhydride	17.73 W/	171.6 W/
Ad	abatic Temperature Rise (ΔTad) and M	TSR	
lame		Temperature	Time
	ΔTad (Heat Removal)	125.5 K	
	Maximum achieveable temperature	165.5 °C	
	MTSR (Heat Removal)	156.6 °C	03:37:26
9	More		
-	ermal Accumulation		
Inc			
		Percent	Time
Game	Thermal accumulation at stoichiometric pt.	Percent 89.89 %	Time 03:37:26

Process Understanding

A simple experiment using the Reaction Calorimeter RC1e[®] provides reliable data to calculate safety relevant parameters, with the highest degree of confidence. iC Safety makes the conversion of experimental data into safety information simple, helping chemists and chemical engineers to understand the potential hazards of a chemical process faster.

Safety Analysis

The safety runaway graph describes both the desired and the undesired reaction in the event of a cooling failure. It factors in the most important safety information, is easy to interpret, and provides the base for a full safety assessment. The safety runaway graph represents a fast check of the nature of thermal risks linked to a given process.

Risk Assessment

In-depth understanding of the exothermicity of a chemical reaction is essential to make adjustments to the process. iC Safety presents the thermal risk, such as thermal accumulation, ΔTadiabatic or MTSR in a concise and understandable format, enabling the appropriate conclusions to be made and the necessary measures to be taken.

Inherently Safer Processes

The criticality graph in iC Safety is a visual representation of the most crucial temperatures of a process. It classifies the process based on four characteristic temperatures. The resulting criticality class is one of the bases which help the engineer to estimate the hazardous potential and define adequate measures to make the process safe.

iC Safety[™] – Critical Safety Information in One Click

The chemical and pharmaceutical industries often use complex products and processes in which large amounts of energy can be released. Process development is concerned with risks related to scale-up and manufacturing the product. Knowing and understanding the potential risks is critical, and a pre-requisite for the safe manufacturing of chemical and pharmaceutical products.

iC Safety is an intuitive application that utilizes experimental data from the Reaction Calorimeter RC1e[®] and other calorimetric techniques. It is designed to speed and simplify the calculation of thermal safety values associated with chemical reactions. Better understanding of the thermal risks help the engineer to estimate the hazardous potential more easily, and to develop safe chemical processes faster.

Evaluating Thermal Risk Streamline Safety Analysis

iC Safety is a crucial tool for evaluating the thermal risk of a chemical reaction at industrial scale. Designed for use by both non-expert and expert users, it summarizes key safety information in an easyto-understand graphical and tabular format, while providing access to detailed safety data needed by expert users.

Transforming Data into Information

iC Safety uses well established algorithms* and procedures to automatically convert reaction calorimetry data into safety information. The basic iC Safety information can be complemented with experimental data from other calorimetric measurements, such as DSC or adiabatic calorimetry as well as properties of the reaction mixture, to increase its significance.

Characterize the Risk

The severity of a runaway reaction is directly linked to the energy of the reaction. Hence, the adiabatic temperature rise in case of a cooling failure, the maximum temperature of the synthesis reaction (MTSR) or maximum achievable temperature (MAT) are important parameters to know. When the basic iC Safety information of the desired reaction is combined with data from the undesired reaction, the hazardous potential of the chemical can be described in a more detailed way, and the necessary conclusions can be drawn.

The information obtained is presented as numbers, trends and schematics that correlate to the relative position of critical temperatures. iC Safety automatically converts them into important charts known as "Safety Runaway Graph" and "Criticality Graph".

How it Works

Following the basic evaluation of experimental data and reaction chemistry, iC Safety calculates the relevant safety parameters for the desired reaction. The results are presented conveniently in a table and the "Safety Runaway Graph" is created.

The TD24

assistant helps the user to integrate data from either DSC, ARC or other calorimetric techniques describing a potential secondary reaction that may occur in case of a cooling failure. In the event of multiple evaluations, all data sets are captured in a convenient table to allow simple comparison of the result sets.

Requirements to Operate iC Safety

- Reaction Calorimeter RC1_e with either the option "Heat Flow" or "RTCal"
- iControl RC1e 5.3 Software
- * Thermal Safety of Chemical Processes, Francis Stoessel, Wiley-VCH, 2008, ISBN: 978-3-527-31712-7

] 🖾 🔚 🎼 🛤	. 🗟 i 😂 i 😐 🖸 🖽 🖽 🖽	?					
Start Page	1 Lab Equipment	Experiment (Analy	ze)*×				
ocedure Equipment	Setup Chemistry Events Repo	t Trends Evaluation I	esuits IC Safety				
esults Snapshots							
Watch Tutorial Video	en iC Cafety	ers and Results as Snar	abet				
		Safety re				Safety runaway graph	
Parameters - Desired reaction (mandatory)			West of Reaction			Temperature desired reaction secondary reacti	
Reaction integral:	gr_hf (Main Reaction)	Name		Value	Value	Temperature desired reaction secondary rea	
Reaction:	Reaction 1: Propionic Anhydride		= aflow hf + aaccu + ados	123 kJ	vaue		
Reference obemical:	Propionic Anhydride		sed amount of 'Propionic Anhydride'	2.115 mol	275.2 m	Tp24 ATec secondary reaction	
		M	lar enthalpy per 'Propionic Anhydride'	58.16 kJ/mol		320.0 °C	
emperature mode:	Isothermal O Non-Isotherr	nal Se	ecific enthalpy per 'Propionic Anhydride'	446.9 kJ/kg		MTSR	
with furthered a state	to highlight values in results table)	V Heat I	Removal			MISR 156.6 °C ΔT_{05} (occu) desired reaction	
		Name		Value	Value	116.6 K	
Heat removal rate lim	it (WI): 20		removal - gfow.hf + gaccu	113.7kJ		Tprocess	
Acceptable thermal a	cc. limit (%): 99		edific heat removal	267.2 k3/kg	249 k3/	40.0.10	
		\$	ecific Heat removal rate	Mean Value	Max Value	L cooling failure	
Sperimental Results			ring reaction time (integration range)	108 W/I	2787 W/	normal process	
Name	Begin Time End Time	D 0	ring Dosing 1: 275.22 g at 17.95 g/min opionic Anhydride	17.73 W/	171.6 W/	Torritor process	
	03:21:38 04:00:02						
	03:23:06 03:38:26		tic Temperature Rise (∆Tad) and N				
	150.30 g 425.52 g 3.048 J/K*a 2.13 J/K*a	Name		Temperature	Time	Criticality graph	
	3.048 J/K*g 2.13 J/K*g 175.4 W/K*m^2 158.7 W/K*m^2		ad (Heat Removal) ximum achieveable temperature	125.5 K 165.5 °C		Temperature	
or used for calc.	End		SR (Heat Removal)	156.6 °C	03:37:26		
		• M		10010 0	00107120	Topa Topa A to Table Topa	
Parameters - Seconda			al Accumulation			320.0 °C	
TD24 Data	Assistant 320.0 °C	1	ar Accumulation		Time		
Asximum technical to	emperature: 80.0 °C	Name	ermal accumulation at stoichiometric pt.	Percent 89,89 %	1me 03:37:26	MTSR	
Use MTSR for Cr	iticality Graph		ermal accumulation at stoichiometric pt. ermal accumulation at end of dosing	89.89 %	03:37:26	156.6 °C	
Use MAT for Critic			ernal accumulation	89.89 %	03:37:26		
Use MAT for Chill	cainy Graph		Thermal Accumulation critical	No		MTT 80.0 °C ° ~ ~	
Safety notice		• M	re			the second se	
fettler Toledo AutoCh	em makes every reasonable effort to Safety''' software is accurate and ti	ensure that	lity.				
nakes no representati	ons or warranties about such informa	tion. Name	,	Tomosrahira	Criticality Index	40.0 °C	
Please note that the results obtained by the iCSafety [™] software require careful validation before they are used. By using this software, you			24	320 °C	oritory a det	Criticality law 1 2 3 4 51	
	ullest extent permissible. MT disclaim		ticality index	-	3		

Technical Specifications

PC Requirements	Single iC Application	Multiple iC Applications		
Operating System	Microsoft® Windows® 8.1 (32/64-bit), Microsoft® Windows® 7 (32/64-bit)			
CPU	Intel Core 2 Duo 2.2 GHz or better	Intel Core 2 Duo 2.8 GHz or better		
Memory	2 GB memory space	3 GB memory space		
Hard Disk	SATA 5400 rpm hard drive	SATA 7200 rpm hard drive		
Graphics	SXGA 1280 x 1024 with 3D Hardware Acceleration			
Additional Software	Internet Explorer® 8.0 Web Browser or later Microsoft® Office® 2007, 2010, or 2013 The latest version of Adobe® Reader® or other PDF reader			

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Supported Experiments

iC Safety 5.3 is applicable to all experiments carried out with iControl 5.0 or 5.3 containing calorimetry information. These data can origin from either a heat flow experiment or an RTCal experiment

Accelerate Development with iC Suite

The iC Suite of software products support METTLER TOLEDO in situ spectroscopy, particle system characterization, precise reactor control and calorimetry. iC software integrates your entire experimental workflow, making it simple to visualize, interpret and report your results.

- Intuitive, consistent user interface
- Seamless integration between products
- Easily transform data into information

To learn more visit www.mt.com/iC

Mettler-Toledo AG, AutoChem Sonnenbergstrasse 74 CH-8603 Schwerzenbach, Switzerland Phone +41 44 806 7711 Fax +41 44 806 7290

Email: autochem@mt.com Internet: http://www.mt.com/autochem

Subject to technical changes © 03/2015 Mettler-Toledo AG, AutoChem Printed in Switzerland, ME-51727004A

www.mt.com/iCSafety

For more information