DerfectIONTM Guidebook

perfectION™ comb Cu 複合電極 確実なイオン測定のために

METTLER TOLEDO

目次

1
3
4 4 6 7 8 10 13
14 16 20 23 25 32
36 36 37 37 37 38 40 41
44 46
47
49

1. はじめに

この取扱説明書には、銅イオン選択電極 (ISE) の準備、操作、およびメンテナンスに関する情報が記載されています。また、一般的な測定の手順、電極の特性、および電極の理論についても説明します。銅イオン電極を使えば、水溶液中の遊離銅イオンを素早く簡単かつ正確に、コスト効率に優れた方法で測定することができます。

perfectION™ Cu 複合電極

比較電極と検知電極が 1 本の電極に一体化されているため、必要なサンプルが少量で済み、無駄を減らすことができます。Click & Clear™ 比較液絡部構造により、液絡部の目詰まりを防ぎ、素早く安定した測定を可能にします。

perfectION™ comb Cu は、イオンメーター用BNC コネクタ (品番 51344712) およびメトラー・トレド滴定装置用Lemo コネクタ (品番 51344812) の2種類が準備されています。

2. 必要な器具・試薬

- 1. セブンマルチ卓上型メータやセブンゴープロ ポータブル型メータなどのイオンメータ、または Tx (T50、T70、T90) Excellence や G20 Compact 滴定装置などのメトラー・トレド製測定機器、BNC コネクタで他社の イオン濃度測定機器に接続して使用可能。
- 2. perfectION™ Cu イオン選択電極
- 3. スターラー (攪拌機)
- 4. 容量フラスコ、メスシリンダー、ビーカー、およびピペット 低濃度銅イオン測定には、プラスチック器具が必要です。
- 5. 蒸留水または脱イオン水
- 6. 比較電解液 D (品番 51344753)
- 7. 銅イオン標準液 1000 mg/L (品番 51344774)
- 8. 固体メンブランイオン選択電極用イオン強度調整剤 (ISA) (品番 51344760)。サンプルおよび標準液のイオン強度を一定に調整します。

3. 電極および測定の準備

電極の準備

検知部から出荷用保護キャップを外します。キャップは保管用に取っておいてください。電極を比較電解液 D で満たします。

電極への電解液注入:

- 1. 電解液ボトルに注入キャップを取り付け、注ぎ口を垂直に立てます。
- 2. 注ぎ口を電極の電解液注入口に差し込み、電解液室に少量の 電解液を注入します。 電極を逆さにして 0 リングを湿らせてから直立にします。
- 3. 電極を持ち、親指でキャップを押し下げ、電解液数滴を電極から流出させます。
- 4. 流出確認後電極キャップを放します。シャフトが元の位置に戻らない場合は、0 リングが湿っているか確認し、シャフトが元の位置に戻るまで手順 2 ~ 4 を繰り返します。
- 5. 電解液を注入口の高さまで電極に注入します。

注: 電解液は、毎日電極の使用前に補充してください。適切 な流量を確保するには、比較電解液の水位をビーカー内の サンプルの溶液より 2.5 cm 以上高い位置に保つ必要があ ります。測定の際は、必ず注入口を開けておいてください。

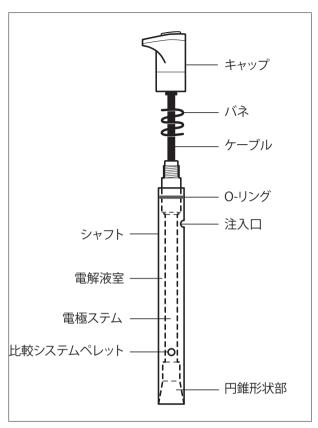


図 1 - perfectION™ Cu 複合電極

電極の機能チェック(スロープ)

多くのイオンメーターを使ってできる一般的な電極の機能チェック の手順について説明します。

ここでは、電極のスロープを測定します。スロープは、濃度が 10 倍変化した時に観測されるmVの変化として定義されています。 スロープ値の確認は、電極の機能をチェックする最善の方法です。

1. 電極が乾燥した状態で保管されていた場合は、「電極の準備」の節に従って電極を 準備します。

2. 電極を mV モードに対応するメーターに 接続します。メーターを mV モードに設定 します。

3. 100 mL の蒸留水と 2 mL の ISA を 150 mL ビーカーに注ぎます。 溶液を十分に攪拌します。

4. 電極を蒸留水で洗浄し、手順3で調製した溶液に浸します。

5. 0.1 mol/L または 1000 mg/L の銅イオン標準液を用意します。ピペットで 1 mL の標準液をビーカーに加え、溶液を十分に攪拌します。測定値が安定したら、電位 (mV) を記録します。

6. ピペットで同じ標準液 10 mL を同じビーカーに注ぎ、溶液を十分に攪拌します。 測定値が安定したら、電位 (mV) を記録します。

 液温が 20 ~ 25 ℃ の場合、2 つのmV 測定値の差は 25 ~ 30 mV になります。 電位差がこの範囲に収まらない場合は、 「トラブルシューティング」の節を参照してください。

サンプルの条件

銅イオン電極のエポキシ本体は、無機溶液に対する耐性があります。 電極は、メタノール、ベンゼン、またはアセトンを含む溶液でも一時的であれば使用可能です。

溶液の温度は 80 \mathbb{C} 未満である必要があり、サンプルおよび標準液は同じ温度でなければなりません。 10-3 mol/L の銅イオン溶液では、温度差 1 \mathbb{C} につき誤差が約 2% 生じます。

 $Cu(OH)_2$ の沈殿を防ぐため、銅イオンサンプルは pH 6 未満でなければいけません。必要に応じて、サンプルを 1 mol/L の HNO3 で酸性化してください。サンプルの測定に最適な pH の範囲については、「pH 依存」の節を参照してください。

測定分析方法の種類に関わらず、測定および校正前にすべてのサンプルおよび標準液に ISA を加えてください。

測定のヒント

銅イオン濃度は、モル/リットル(mol/L)、ミリグラム/リットル(mg/L、ppm)、または任意の単位で測定できます。

表 1 - 銅イオン濃度単位の換算係数

銅イオン濃度単位の換算係数	mg/L
1.0	63550
10-1	6355
1.57 x 10 ⁻²	1000
10-2	635.5
10-3	63.55
10-4	6.355
1.57 x 10 ⁻⁵	1

- すべての標準液およびサンプルは、一定の同じ速さでゆっくり 攪拌してください。マグネチックスターラーからサンプル溶液へ の熱伝導による測定値の不安定化を防ぐために、スターラーと ビーカーの間に発泡スチロールやダンボールなどの熱を遮断す るものをはさんでください。
- 校正には、必ず新しく用意した標準液を使用してください。
- サンプルのキャリーオーバーによるサンプル間の汚染が起こらないよう測定と測定の間に、必ず蒸留水で電極を洗浄してください。余分な水気は取り除いてください。<注意>電極の検知膜を拭いたり擦ったりしないでください。
- 正確に測定できるよう、標準液とサンプルはすべて同じ温度に してください。

高濃度 (銅イオン濃度が 10-1 mol/L を超える) サンプルは、測定前に希釈してください。

• 2 時間おきに、電極の校正が有効か次の方法で確認してください。校正に使用した最低濃度の標準液を再度用意して、値を測定します。値の変化が 2% を超えた場合は、電極の再校正をおこなってください。

- 溶液に電極を浸した後に、電極のメンブランに気泡が付着していないか確認してください。付着している場合は、電極を溶液に再度浸し、軽くたたいて気泡を取り除いてください。
- 高イオン強度のサンプルを測定する場合、標準液もサンプルと 同様のイオン強度(銅イオンを除く)を持つよう準備してくださ い。
- 比較電解液の流出が一定におきるように、測定中は再注入口のカバーを開けておいてください。
- 電極を浮遊物の多い濁液や泥水などのサンプルまたは粘性の高いサンプルで使用した場合、また電極の反応が遅くなった場合などは、まず電極の電解液室内を完全に空にします。そして、液絡部を開いたまま、液絡部を蒸留水で洗い流してください。再び電解液室内から水を完全に除き、新しい電解液で満たします。電極キャップを押し下げ、電解液数滴を液絡部から流出させ、流出分の電解液を補給します。
- 校正および測定は、濃度の一番低い標準液またはサンプルから開始してください。

電極の保管とメンテナンス

電極の保管

次の測定を 1 週間以内におこなう場合は、電極を銅イオンの入った 4 mol/L の塩化カリウム溶液に浸して保管してください。保管に使う溶液の銅イオン濃度は、校正用銅イオン標準液の最低濃度に近いものにしてください。

保管液に ISA を加えないでください。また、電極内の電解液が蒸発しないようにしてください。蒸発すると結晶化し、使用できなくなる可能性があります。

測定を 1 週間以上おこなわない場合は、電極内の電解液を排出 し、電解液室を蒸留水で洗い流し、メンブランに出荷用保護カバーをかぶせてください。内部の水分をできるだけ乾燥させ、乾燥した場所で保管してください。

銅イオン複合電極の検知膜の研磨

固体でできた電極の検知メンブランの表面は時間とともに劣化します。劣化の現象は、低いスロープ値、ドリフト、低い再現性、低濃度サンプルでの反応の損失として現れます。劣化した電極の反応は、メンブランの表面を研磨ストリップで磨くことにより回復させることができます。研磨ストリップは、表面が傷ついたり化学的に汚染したりした場合にも使用できます。

- 1. 研磨ストリップを約 2.5 cm 切り取ります。
- 2. 電極を持ち、検知メンブランを上に向けます。
- 3. メンブランに蒸留水数滴を落とします。
- 4. 研磨ストリップの粗い面をメンブランにあて、指で軽く押さえます。
- 5. 電極を約30秒間回転させます。
- 電極を蒸留水で洗浄し、1 mg/L または 10-5 mol/L の銅イオン標準液に 10 分間浸します。

銅イオン複合電極の洗浄

電極のシャフトの内側やシャフト内の電極ステム先端のメンブラン の付いた円錐形状部にサンプルまたは沈殿物が付着した場合は、 電解液または蒸留水で洗い流してください。

- 1. 親指で電極キャップを押し下げて、電極から電解液をすべて排出します。電解液室からすべての電解液が排出されるまで、キャップを押し下げてください。
- 2. 電極を蒸留水で満たし、電解液室から水がすべて排出されるまでキャップを押し下げます。電極からすべてのサンプルまたは 沈殿物が取り除かれるまでこの手順を繰り返します。
- 3. 電極の再注入口まで新しい電解液で満たします。キャップを押し下げ、電解液数滴を電極から排出し、排出分の電解液を補給します。

銅イオン複合電極の分解と再組み立て

注: 通常、分解は必要ありません。徹底した洗浄が必要な場合を除き、行わないでください。

- 1. 電極を傾け、電解液で電極ステムの 0 リングを湿らせます。電極本体を片手で支え、親指で電極キャップを押し下げて、電極内の溶液を排出します。
- キャップのネジを反時計回りに回し、キャップとバネをケーブル 側にスライドさせます。
- 3. シャフトをおさえ、ケーブルをゆっくりとシャフト内に押入れ、シャフトから電極ステムを押し出します。
- 4. きれいな柔らかいティッシュペーパーを使用して円錐形状部を つかみ、ゆっくりとシャフトからステムを引き出します。電極ステム上の比較システムペレットに触れないよう注意してください。 触れた場合、ペレットが損傷する可能性があります。電極ステム およびシャフト全体を蒸留水で洗い、空気乾燥させます。
- 5. 電極ステムの 0 リングに電解液を 1 滴落として湿らせます。電極ステムをシャフトに差し込みます。
- 6. 円錐形状部の底面近くの側面と角度を持ったシャフトの先端が きっちりとはまるまで、ゆっくりとまわしてステムをシャフトに収 めます。
- 7. 電極ステムにバネを取り付け、キャップをまわして止めます。電極を電解液で再度満たします。

段階希釈

段階希釈は、一連の標準液を準備するのに最も簡単な方法です。 段階希釈では、容量ガラス器具で基本になる比較的濃度の高い標準液を希釈して第2段階の標準液を調製します。同様に、第2段階の標準液を新駅して第3段階の標準液を調製します。希望の範囲の標準液が調製できるまで、この作業を繰り返します。

- 1. 100 mg/L の銅イオン標準液の調製 ピペットで 1000 mg/L の標準液 10 mL を 100 mL 容量フラスコに注ぎます。マーク の位置まで脱イオン水で希釈し、よく混ぜます。
- 10 mg/L の標準液の調製 ピペットで 100 mg/L の標準液 10 mL を 100 mL 容量フラスコに注ぎます。マークの位置まで 脱イオン水で希釈し、よく混ぜます。
- 3. 1 mg/L の標準液の調製 ピペットで 10 mg/L の標準液 10 mL を 100 mL 容量フラスコに注ぎます。マークの位置まで脱イオン水で希釈し、よく混ぜます。

異なる濃度の標準液を調製する場合は、以下の式を使用します。

$$\mathbf{C}_1 \cdot \mathbf{V}_1 = \mathbf{C}_2 \cdot \mathbf{V}_2$$

C, = 元の標準液の濃度

V, = 元の標準液の容量

C₂ = 希釈後の標準液の濃度

V₂ = 希釈後の標準液の容量

たとえば、100 mg/L の銅イオン標準液 1000 mL を 6355 mg/L の銅イオン標準液から調製する場合は、次のように なります:

 $C_1 = 6355 \text{ mg/L}$

 $V_1 = unknown$

 $C_2 = 100 \text{ mg/L}$

 $V_2 = 1000 \, \text{mL}$

 $6355 \text{ mg/L} \cdot V_1 = 100 \text{ mg/L} \cdot 1000 \text{ mL}$

 $V_1 = (100 \text{ mg/L} \cdot 1000 \text{ mL}) / 6355 \text{ mg/L} = 15.7 \text{ mL}$

4. 測定分析法

イオン濃度を測定・分析するには、様々な方法があります。ここでは、これらの方法について説明します。

直接校正法は、多数のサンプルを測定する場合に適した簡単な方法です。測定は各サンプル1回しか必要ありません。校正は、段階希釈で準備した一連の標準液を使用して行います。

サンプルの濃度は、標準液と比較して特定します。サンプルと標準液のイオン強度 (銅イオンを除く) が同様になるように、すべての溶液に ISA を加えます。

低濃度校正法は、直接校正法と似ています。

ここで紹介する方法は、予想されるサンプルの銅イオン濃度が 0.6 mg/L または 10⁻⁵ mol/L 未満の溶液に対して使用します。この低濃度における測定では、電極の非直線性反応に対応するよう、少なくとも 3 点で校正を行うことをお勧めします。低濃度校正法に使う校正標準液は、特殊な調製方法を使って準備する必要があります。(詳細は23ページを参照)。

増分法は、校正をせずに、サンプルの濃度を測定できる便利な方法です。次にいくつかの増分法について説明します。これらの方法は、過剰な (50 ~ 100 倍) 錯化剤が存在する場合でも銅イオンの総イオン濃度を測定できます。直接校正法と同様に、任意の濃度単位を使用して測定できます。

• 既知量添加法は、濃度の低いサンプルの測定、直接校正法の 結果の確認(錯化剤が存在しない場合)、過剰な錯化剤が存 在する状況での総イオン濃度の測定に役立ちます。電極をサン プルに浸し、測定するイオンを含む標準液の一定量をサンプル に加えます。標準液添加前と添加後の電位の変化から、元のサ ンプルの濃度を特定します。

- 滴定は、測定の対象となっているイオン、すなわち銅イオンと反応する滴定剤をサンプル溶液に加えていくことにより銅イオンの濃度を測定する定量分析法です。検知電極を使用すれば、滴定の終点を判断することができます。特にイオン選択電極は、サンプルの色や濁度の影響を受けないため、終点検知の道具として有用です。滴定の精度は、直接校正法の約10倍です。
- 指示薬滴定法は、測定の対象となるイオン用の電極が存在しない場合に有用です。この方法では、電極が、滴定前にサンプルに加えられたイオンを検知します。銅イオン電極は、多くの金属イオンの指示薬滴定法に使用できます。

	直接 校正法	少量向け 直接 校正法	低濃度 校正法	既知量 添加法	滴定
$[Cu^{+2}] < 0.6$ mg/L			~		
$[Cu^{+2}] > 0.6$ mg/L	~			~	V
$[Cu^{+2}] > 1.0$ mg/L		~			
精度向上					~
一時的な サンプリング				~	
少量のサンプル		~		~	
多数のサンプル	~		~	~	
化学物質使用量 の低減		V			
現場測定	~				
イオン強度が 0.1 mol/L を 超える	~			V	
他の金属イオン分析					(Indicator Titration)

直接校正法

典型的な直接校正曲線

直接校正法では、校正曲線は、メーターに構成させるか片対数グラフ用紙上で作成します。対数 (横) 軸の濃度に対して、電極で測定した標準液の電位を比例 (縦) 軸にデータをとります。曲線の直線領域では、校正曲線を決定するために最低限必要な標準液の種類は 2 種類です。

非直線領域では、さらに多くの校正点が必要になります。直接校 正法は、直線反応領域においての濃度を特定するために使用しま す。非直線領域での低濃度測定法については、後の節で説明しま す。

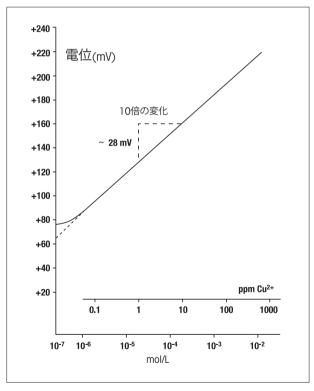


図2-典型的な直接校正曲線

直接校正法の概要

ここで説明する直接測定法は、中~高濃度の測定にお勧めします。 サンプルは、電極の直線測定領域内、すなわち銅イオン濃度が 0.6 mg/L または 10⁻⁵ mol/L を超えている必要があります。2 点校 正で十分ですが、さらに多くの校正点を使用することもできます。 イオンメーターを使用すると、サンプル濃度をメーターから直接読 み取ることができます。mV メーターの場合は、校正曲線を片対数 グラフ用紙上に作成するか、スプレッドシートまたはグラフ作成プ ログラムを使用して(対数濃度値に対する)線形回帰を実行するこ とができます。

校正のヒント

- 標準液の濃度は、予測されるサンプル濃度範囲をカバーしている必要があります。
- 必ず、標準液またはサンプル 100 mL あたり 2 mL の ISA を加えてください。
- 総イオン強度が 0.1 mol/L 以上の高イオン強度サンプルの場合は、サンプルと同様の組成と総イオン強度(ただし、銅イオンを除く)を持つ標準液を調製するか、既知量添加法を使用してサンプルを測定してください。
- 校正の際は、濃度の一番低い標準液から始め、順番に一番濃度の高い標準液にむかっておこないます。

直接校正法の準備

- 1. 「電極の準備」の節に記載の通りに電極を準備します。
- 2. 電極をメーターに接続します。
- 3. 標準液は、予測されるサンプルの濃度の範囲をカバーし、10 倍の濃度差を持つ最低2種類以上を準備します。標準液は、分析の目的に合わせて任意の濃度単位で準備できます。標準液の調製方法については、「段階希釈」の節を参照してください。測定をおこなう際、すべての標準液は、サンプルと同じ温度になるようにしてください。電極性能に対する温度依存の詳細については、「温度依存」の節を参照してください。

イオンメーターを使用した直接校正法

注: メーターの使用方法の詳細については、メーターの取扱説明書を参照してください。

- 1. 濃度が低い方の標準液 100 mL と 2 mL の ISA を 150 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 2. 電極を蒸留水で洗浄し、水分をきれいな紙や布に吸わせて取り除き、手順1で準備した標準液が入ったビーカーに浸して校正を始めます。測定値が安定したら、メーターの取扱説明書の手順に従って標準液の値が表示されるようにメーターを調整します。
- 3. 次に濃度が高い方の標準液 100 mL と 2 mL の ISA を別の 150 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 4. 電極を蒸留水で洗浄し、水分を取り除き、手順3で準備した標準液が入ったビーカーに浸して校正を始めます。測定値が安定したらメーターの取扱説明書の説明に従って今の標準液の値が表示されるようにメーターを調整します。
- 5. 得られた結果からスロープ値を計算(高濃度-低濃度)します。標準液が20~25℃の場合、スロープは25~30 mVになります。
- 6. 100 mL のサンプルと 2 mL の ISA をきれいな 150 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 7. 電極を蒸留水で洗浄し、水分を取り除き、サンプルに浸し測定 を開始します。サンプルの濃度がメーターに表示されます。

注: 溶液と ISA の比が 50:1 であれば、上記以外の容量を 使用することもできます。

mV 測定のメーターを使用した直接校正法

注: 詳細については、メーターの取扱説明書を参照してください。

- 1. メーターを mV モードに設定します。
- 2. 濃度が低い方の標準液 100 mL と 2 mL の ISA を 150 mL ビーカーに注ぎ、溶液が均一に混ざるよう十分に攪拌します。
- 3. 電極を蒸留水で洗浄し、水分をきれいな紙や布に吸わせて取り除き、手順2で準備した標準液が入ったビーカーに浸して校正を始めます。測定値が安定したら、標準液の濃度とそのmV値を記録します。
- 4. 次に濃度が高い方の標準液 100 mL と 2 mL の ISA を別の 150 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 5. 電極を蒸留水で洗浄し、水分を取り除き、手順4で準備した標準液が入ったビーカーに浸して校正を始めます。 測定値が安定したら、標準液の濃度とそのmV 値を記録します。
- 6. 片対数グラフ用紙を使用して、線形軸(縦)にmV値、対数軸 (横)に標準液の濃度をとり、校正曲線を作成します。
- 100 mL のサンプルと 2 mL の ISA をきれいな 150 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 8. 電極を蒸留水で洗浄し、水分を取り除き、ビーカーに浸して測定を始めます。測定値が安定したら、mV 値を記録します。
- 9. 手順 6 で作成した校正曲線を使用して、未知のサンプル濃度を特定します。

注: 溶液と ISA の比が 50:1 であれば、上記以外の容量を 使用することもできます。

少量向け直接校正法

perfectION™ 銅イオン複合電極に採用された特殊な液絡部構造、Click & Clear™により、5 mL 程度の少量のサンプルでも直接校正法を応用すれば測定することができます。必要な溶液の容量が少ないことから、銅イオン標準液および ISA といった試薬の使用量を減らすことができます。ただし、サンプルの銅イオン濃度はすべて 1 mg/L または 1.57 x 10-5 mol/L を超えている必要があります。

校正は 2 点で十分ですが、3 点以上でもかまいません。次に説明する手順では、サンプルの量を25 mLとしていますが、溶液の最終的な量は、電極の下部が十分に浸れば、これより少なくても測定可能です。

校正のヒント

- 標準液の濃度は、予測されるサンプル濃度範囲をカバーしている必要があります。
- 標準液またはサンプルと ISA の比を 50:1 に保ってください。
- 総イオン強度が 0.1 mol/L 以上の高イオン強度サンプルの場合は、サンプルと同様の組成と総イオン強度(ただし銅イオンを除く)を持つ標準液を調製するか、既知量添加法を使用してサンプルを測定してください。
- 校正は、濃度の一番低い標準液から始め、順番に一番濃度の 高い標準液にむかっておこないます。
- 校正に使用する標準液と測定に使用するサンプルの量は、同じになるようしてください。

少量向け直接校正法の準備

- 1. 「電極の準備」の節に記載の通りに電極を準備します。
- 2. 電極をメーターに接続します。
- 3. 標準液は、予測されるサンプルの濃度の範囲をカバーし、10倍の濃度差を持つ最低2種類を準備します。標準液は、分析の目的に合わせて任意の濃度単位で準備できます。標準液の調製方法については、「段階希釈」の節を参照してください。測定をおこなう際、すべての標準液は、サンプルと同じ温度になるようにしてください。温度による電極の性能に対する影響の詳細については、「温度依存」の節を参照してください。

イオンメーターを使用した少量向け直接校正法

注: メーターの使用方法の詳細については、メーターの取扱説明書を参照してください。

- 1. 濃度が低い方の標準液 25 mL と 0.5 mL の ISA を 50 mL ビーカーに注ぎ、溶液が均一に混ざるよう十分に攪拌します。
- 2. 電極を蒸留水で洗浄し、水分をきれいな紙や布に吸わせて取り除き、手順1で準備した標準液が入ったビーカーに浸して校正を始めます。測定値が安定したら、メーターの取扱説明書の説明に従って標準液の値が表示されるようにメーターを調整します。
- 次に濃度が高い方の標準液 25 mL と 0.5 mL の ISA を別の 50 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 4. 電極を蒸留水で洗浄し、水分を取り除き、手順3で準備した標準液が入ったビーカーに浸して校正を始めます。測定値が安定したらメーターの取扱説明書の手順に従って今の標準液の値が表示されるようにメーターを調整します。
- 5. 得られた結果からスロープ値を計算(高濃度-低濃度)します。標準液が 20 ~ 25 °C の場合、スロープは 25 ~ 30 mV になります。
- 6. 25 mL のサンプルと 0.5 mL の ISA をきれいな 50 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 7. 電極を蒸留水で洗浄し、水分を取り除き、サンプルに浸し測定 を開始します。サンプルの濃度がメーターに表示されます。

注: 溶液と ISA の比が 50:1 であれば、上記以外の容量を 使用することもできます。

mV 測定のメーターを使用しておこなう少量向け直接校正法

注: メーターの使用方法の詳細については、メーターの取扱説明書を参照してください。

- 1. メーターを mV モードに設定します。
- 2. 濃度が低い方の標準液 25 mL と 0.5 mL の ISA を 50 mL ビーカーに注ぎ、溶液が均一に混ざるよう十分に攪拌します。
- 3. 電極を蒸留水で洗浄し、水分をきれいな紙や布に吸わせて取り除き、手順 2 で準備した標準液が入ったビーカーに浸して校正を始めます。測定値が安定したら、標準液の濃度とそのmV値を記録します。
- 4. 次に濃度が高い方の標準液 25 mL と 0.5 mL の ISA を別の 50 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 5. 電極を蒸留水で洗浄し、水分を取り除き、手順4で準備した標準液が入ったビーカーに浸して校正を始めます。測定値が安定したら、標準液の濃度とそのmV 値を記録します。
- 6. 片対数グラフ用紙を使用して、線形軸(縦)にmV値、対数軸 (横)に標準液の濃度をとり、校正曲線を作成します。
- 7. 25 mL のサンプルと 0.5 mL の ISA をきれいな 50 mL ビーカーに注ぎ、溶液を十分に攪拌します。
- 8. 電極を蒸留水で洗浄し、水分を取り除き、ビーカーに浸して測定を始めます。測定値が安定したら、mV 値を記録します。
- 9. 手順 6 で作成した校正曲線を使用して、未知のサンプル濃度を特定します。

注: 溶液と ISA の比が 50:1 であれば、上記以外の容量を 使用することもできます。

低濃度校正法

ここで紹介する方法は、銅イオン濃度が 0.6 mg/L (10-5 mol/L) 未満の溶液を測定する際に使用します。銅イオン濃度が低く、総イオン強度が高い (10-1 mol/L を超える) 溶液の場合は、サンプルと同様の組成と総イオン強度 (ただし銅イオンを除く) を持つ標準液を調製して、同じ手順を実行します。

正確な結果を得るには、次の条件が満たされている必要があります:

- 予測されるサンプル濃度範囲をカバーした、少なくとも3種類の濃度の校正標準液を調製してください。
- 標準液およびサンプルには、必ず低濃度の ISA (下記参照)を 使用してください。
- 低濃度の銅イオンの測定には、プラスチック器具を使用してください。
- 電極が安定するまで十分な時間をとってください。低濃度測定には、長い反応時間が必要です。
- すべての標準液およびサンプルは、一定の同じ速さで攪拌してください。.

低濃度校正法の準備

- 1. 「**雷極の準備**」の節に記載の通りに電極を準備します。
- 2. 電極をメーターに接続します。メーターを mV モードに設定します。
- 3. ピペットで 20 mL の ISA (品番 5134476) を 100 mL 容量フラスコに注ぎ、マークの位置まで蒸留水で希釈して、低濃度 ISA を調製します。 低濃度の ISA は、低濃度測定の場合のみ使用してください。
- 4. 標準液を選択します。10 mg/L の銅イオン標準液または 10-4 mol/L の銅イオン標準液を使用してください。10 mg/L の標準液を調製するには、ピペットで 1000 mg/L の標準液 10 mL を 1 リットル容量フラスコに注ぎます。マークの位置まで蒸留水で希釈し、溶液を十分に混ぜます。

低濃度校正と測定

- 1. 100 mL の蒸留水と 1 mL の低濃度 ISA を 150 mL ビーカー に注ぎます。
- 2. 電極を蒸留水で洗浄し、水分をきれいな紙や布に吸わせて取り除き、ビーカーに浸します。溶液をしっかりと攪拌します。
- 3. **表 2** に示す順番に従って、10 mg/L または 10⁻⁴ mol/L の銅イオン標準液と低濃度 ISA の混合溶液をビーカーに加えていきます。 加えるごとに、安定したmV値を記録します。
- 4. 片対数グラフ用紙を使用して、比例軸(縦)にmV値、対数軸 (横)に標準液の濃度をとり、校正曲線を作成します。校正曲 線は、毎日新しい標準液を使用して作成してください。
- 5. 100 mL のサンプルと 1ml の低濃度 ISA をきれいな 150 mL ビーカーに注ぎます。電極を蒸留水で洗浄し、水分を取り除き、サンプルに浸します。
- 6. 溶液を十分に攪拌し、測定値が安定したら、その mV 値を記録します。
- 7. 低濃度の校正曲線を使用して、サンプル濃度を特定します。

表 2 - 低濃度校正法の校正曲線

100 mL の蒸留水および 1 mL の低濃度 ISA に加える標準液の量

ステップ	ピペット サイズ	追加容量	濃度 (mg/L)
1	0.1 mL	0.01 mL	0.001
2	0.1 mL	0.1 mL	0.011
3	1.0 mL	0.9 mL	0.100
4	10 mL	6.0 mL	0.662

ステップ	ピペット サイズ	追加容量	濃度 (mol/L)
1	0.1 mL	0.01 mL	1.0 x 10 ⁻⁸
2	0.1 mL	0.1 mL	1.11 x 10 ⁻⁷
3	1.0 mL	0.9 mL	1.0 x 10 ⁻⁶
4	10 mL	10 mL	9.9 x 10 ⁻⁶

既知量添加法

既知量添加法は、校正曲線が必要ないため、電極の直線測定領域 (銅イオン濃度が 0.6 mg/L を超えている)のサンプルを測定す る場合に便利です。また、この方法では、直接校正法の結果を確認 したり、過剰な錯化剤が存在する場合での総イオン濃度を測定し たりすることも可能です。標準液を加える前と後にサンプルの電位 を測定します。

正確な結果を得るには、次の条件が満たされている必要があります:

- 添加後に、濃度が約 2 倍になるようにしてください。
- サンプル濃度は予想される結果の3倍以内でなければなりません。
- 錯化剤がまったく存在しない状態か、もしくは錯化剤が過剰に存在している状態でなければなりません。
- 非錯イオンと錯イオンの比が標準液の追加によって変化しては なりません。
- サンプルおよび標準液は同じ温度にしてください。
- 2 回から複数回にわたって既知量添加を行う場合、最終的に添加する標準液の濃度は、サンプル濃度の 10 ~ 100 倍にする必要があります。
- 測定前に、サンプル 100 mL あたり 2 mL の ISA を加えてください。

既知量添加法の準備

- 1. 「電極の準備」の節に記載の通りに電極を準備します。
- 2. 電極をメーターに接続します。
- 3. サンプルに加えるとサンプルの銅イオン濃度が 2 倍になる標準液を調製します。ガイドラインについては、**表 3** を参照してください。
- 4. 「電極の機能チェック (スロープ)」の節の手順に従って、電極のスロープを特定します。
- 5. 電極を蒸留水で洗浄します。

表3-既知量添加法のガイドライン

追加する容量	標準液の濃度
1 mL	サンプル濃度の 100 倍
5 mL	サンプル濃度の 20 倍
10 mL*	サンプル濃度の 10 倍

^{*} 最も扱いやすい容量

既知量添加モード対応のメーターを使用する場合

注: メーターの使用方法の詳細については、メーターの取扱説明書を参照してください。

- 1 既知量添加モードにメーターを設定します。
- 2. 100 mL のサンプルと 2 mL の ISA をビーカーに注ぎます。電極を蒸留水で洗浄し、サンプル溶液に浸し、十分に攪拌します。
- 3. 測定値が安定したら、必要に応じて、メーターの取扱説明書に 従ってメーターを調整します。
- 4. ピペットで適切な容量の標準液をビーカーに加え、溶液を十分に攪拌します。
- 5. 測定値が安定したら、サンプル濃度を記録します。

mVモード測定のメーターを使用した既知量添加法

- 1. メーターを相対mVモードに設定します。相対mVモードを使用できない場合は、mVモードを使用します。
- 100 mL のサンプルと 2 mL の ISA を150 mL ビーカーに注ぎ、 十分に攪拌します。
- 3. 電極を蒸留水で洗浄し、水分をきれいな紙や布に吸わせて取り除き、ビーカーに浸し測定を開始します。測定値が安定したら、実際の mV 値を記録します。
- 4. ピペットで適切な容量の標準液をビーカーに加え、溶液を十分に攪拌します。
- 5. 測定値が安定したら、mV 値を記録します。 ここで得た測定値から手順3で得た測定値を差し引き、ΔE を 計算します。
- 6. 表 5 を使用して、電位変化 ΔE に対応する Q の値を特定します。元のサンプル濃度を特定するには、Q (濃度比) に、加えた標準液の濃度を掛けます:

C_{標準液} = 標準液の濃度 C_{サンプル} = サンプルの濃度

Q = 表 5 から得られた濃度比の値

表の濃度比 (Q) の値は、10% の容量変化について計算されています。スロープおよび容量変化が異なる場合の Q の計算式は、次のとおりです。

Q = $(p \cdot r) / \{[(1 + p) \cdot 10^{\Delta E/S}] - 1\}$

Q = 表 5 から得られた濃度比の値

 $\Delta E = E_s - E_t$ $E_t = 测定電位1$ $E_s = 测定電位2$

S = 電極のスロープ

p = 標準液の容量/サンプルおよび ISA の容量r = サンプルおよび ISA の容量/サンプルの容量

Excelを使用した既知量添加法のサンプル測定結果の計算

標準液の添加でサンプルと標準液の割合が変化しても、既知量添加法の結果を計算できるように単純なスプレッドシートを設定することもできます。一般的なワークシートを表 4 に示します。表中の数値は例ですが、式およびその位置については、この表から変えないでください。

表 4 - Excel スプレッドシートを使用した既知量添加法の計算

A	В	С
1		値を入力
2	サンプルおよび ISA の容量 (mL)	102
3	加えた容量(mL)	10
4	加えた溶液の濃度	10
5	サンプルの容量	100
6	初期 mV 測定値	45.3
7	最終的な mV 測定値	63.7
8	電極のスロープ	28.2
9		
10		得られた値
11	Δ E (電位差)	= C7 - C6
12	溶液の容量比	= C3/C2
13	逆対数関数項	= 10^ (C11/C8)
14	サンプルの容量比	= C2/C5
15	Q _項	= C12*C14/ (((1+C12)*C13)-1)
16	初期濃度の計算値	= C15*C4

表 5 – 容量変化が10%の時の濃度比 Qの 値 スロープ (列の頭) の単位は (mV) / (10倍の濃度変化)

ΔΕ	Q 濃度比 28.6	20.1	20.6	20.1
2.5	0.2917	0.2957	0.2996	0.3035
3.0	0.2512	0.2550	0.2586	0.2623
3.5	0.2196	0.2230	0.2264	0.2298
4.0	0.1941	0.1973	0.2005	0.2036
4.5	0.1732	0.1762	0.1791	0.1821
5.0	0.1557	0.1585	0.1613	0.1640
5.1	0.1525	0.1553	0.1580	0.1608
5.2	0.1495	0.1522	0.1549	0.1576
5.3	0.1465	0.1492	0.1519	0.1546
5.4	0.1437	0.1463	0.1490	0.1516
5.5	0.1409	0.1435	0.1461	0.1487
5.6	0.1382	0.1408	0.1434	0.1459
5.7	0.1356	0.1382	0.1407	0.1432
5.8	0.1331	0.1356	0.1381	0.1406
5.9	0.1306	0.1331	0.1356	0.1381
6.0	0.1282	0.1307	0.1331	0.1356
6.1	0.1259	0.1283	0.1308	0.1332
6.2	0.1236	0.1260	0.1284	0.1308
6.3	0.1214	0.1238	0.1262	0.1285
6.4	0.1193	0.1217	0.1240	0.1263
6.5	0.1172	0.1195	0.1219	0.1242
6.6	0.1152	0.1175	0.1198	0.1221
6.7	0.1132	0.1155	0.1178	0.1200
6.8	0.1113	0.1136	0.1158	0.1180
6.9	0.1094	0.1117	0.1139	0.1161
7.0	0.1076	0.1098	0.1120	0.1142
7.1	0.1058	0.1080	0.1102	0.1123
7.2	0.1041	0.1063	0.1084	0.1105
7.3	0.1024	0.1045	0.1067	0.1088
7.4	0.1008	0.1029	0.1050	0.1071
7.5	0.0992	0.1012	0.1033	0.1054
7.6	0.0976	0.0997	0.1017	0.1037
7.8	0.0946	0.0966	0.0986	0.1006
8.0	0.0917	0.0936	0.0956	0.0976
8.2	0.0889	0.0908	0.0928	0.0947
8.4	0.0863	0.0882	0.0900	0.0919
8.6	0.0837	0.0856	0.0874	0.0893
8.8	0.0813	0.0831	0.0849	0.0868
9.0	0.0790	0.0808	0.0825	0.0843
9.2	0.0767	0.0785	0.0803	0.0820
9.4	0.0746	0.0763	0.0780	0.0798
9.6	0.0725	0.0742	0.0759	0.0776
9.8	0.0706	0.0722	0.0739	0.0755
10.0	0.0687	0.0703	0.0719	0.0735
10.2	0.0668	0.0684	0.0700	0.0716
10.4 10.6 10.8 11.0 11.2	0.0651 0.0634 0.0617 0.0602 0.0586 0.0572	0.0666 0.0649 0.0633 0.0617 0.0601 0.0586	0.0682 0.0665 0.0648 0.0631 0.0616 0.0600	0.0698 0.0680 0.0663 0.0646 0.0630 0.0615

ΔΕ	Q 濃度比			
	28.6	29.1	29.6	30.1
11.6	0.0557	0.0572	0.0586	0.0600
11.8	0.0544	0.0558	0.0572	0.0585
12.0	0.0530	0.0544	0.0558	0.0572
12.2	0.0518	0.0531	0.0545	0.0558
12.4	0.0505	0.0518	0.0532	0.0545
12.6	0.0493	0.0506	0.0519	0.0532
12.8	0.0481	0.0494	0.0507	0.0520
13.0	0.0470	0.0483	0.0495	0.0508
13.2	0.0459	0.0472	0.0484	0.0497
13.4	0.0449	0.0461	0.0473	0.0485
13.6	0.0438	0.0450	0.0462	0.0474
13.8	0.0428	0.0440	0.0452	0.0464
14.0	0.0419	0.0430	0.0442	0.0454
14.2	0.0409	0.0421	0.0432	0.0444
14.4	0.0400	0.0411	0.0423	0.0434
14.6 14.8	0.0391 0.0382	0.0402	0.0413 0.0404	0.0425
15.0	0.0374	0.0393 0.0385	0.0396	0.0416 0.0407
15.5	0.0354	0.0365	0.0375	0.0386
16.0	0.0335	0.0345	0.0356	0.0366
16.5	0.0318	0.0328	0.0337	0.0347
17.0	0.0302	0.0311	0.0320	0.0330
17.5	0.0286	0.0295	0.0305	0.0314
18.0	0.0272	0.0281	0.0290	0.0298
18.5	0.0258	0.0267	0.0275	0.0284
19.0	0.0246	0.0254	0.0262	0.0270
19.5	0.0234	0.0242	0.0250	0.0258
20.0	0.0223	0.0230	0.0238	0.0246
20.5	0.0212	0.0219	0.0227	0.0234
21.0	0.0202	0.0209	0.0216	0.0224
21.5	0.0192	0.0199	0.0206	0.0213
22.0	0.0183	0.0190	0.0197	0.0204
22.5	0.0175	0.0181	0.0188	0.0195
23.0	0.0167	0.0173	0.0179	0.0186
23.5	0.0159	0.0165	0.0171	0.0178
24.0	0.0152	0.0158	0.0164	0.0170
24.5	0.0145	0.0151	0.0157	0.0162
25.0	0.0139	0.0144	0.0150	0.0155
25.5	0.0132	0.0138	0.0143	0.0149
26.0	0.0126	0.0132	0.0137	0.0142
26.5	0.0128	0.0132	0.0137	0.0142
27.0	0.0116	0.0120	0.0125	0.0131
27.5	0.0110	0.0115	0.0120	0.0125
28.0	0.0106	0.0110	0.0115	0.0120
28.5 29.0	0.0101	0.0106	0.0110	0.0115
29.5	0.0093	0.0097	0.0101	0.0105
30.5	0.0085	0.0089	0.0093	0.0097
31.5	0.0078	0.0081	0.0085	0.0089
32.0	0.0074	0.0078	0.0082	0.0085
32.5	0.0071	0.0075	0.0078	0.0082

ΔΕ	Q 濃度比 28.6	29.1	29.6	30.1
33.0	0.0068	0.0072	0.0075	0.0079
33.5	0.0065	0.0069	0.0072	0.0076
34.0	0.0063	0.0066	0.0069	0.0072
34.5	0.0060	0.0063	0.0066	0.0070
35.0	0.0058	0.0061	0.0064	0.0067
35.5	0.0055	0.0058	0.0061	0.0064
36.0	0.0053	0.0056	0.0059	0.0062
36.5	0.0051	0.0053	0.0056	0.0059
37.0	0.0049	0.0051	0.0054	0.0057
37.5	0.0047	0.0049	0.0052	0.0055
38.0	0.0045	0.0047	0.0050	0.0052
38.5	0.0043	0.0045	0.0048	0.0050
39.0	0.0041	0.0043	0.0046	0.0048
39.5	0.0039	0.0042	0.0044	0.0046
40.0	0.0038	0.0040	0.0042	0.0045
40.5	0.0036	0.0038	0.0041	0.0043
41.0	0.0035	0.0037	0.0039	0.0041
41.5	0.0033	0.0035	0.0037	0.0040
42.0	0.0032	0.0034	0.0036	0.0038
42.5	0.0031	0.0033	0.0035	0.0037
43.0	0.0029	0.0031	0.0033	0.0035
43.5	0.0028	0.0030	0.0032	0.0034
44.0	0.0027	0.0029	0.0031	0.0032
44.5	0.0026	0.0028	0.0029	0.0031
45.0	0.0025	0.0027	0.0028	0.0030
45.5	0.0024	0.0026	0.0027	0.0029
46.0	0.0023	0.0024	0.0026	0.0028
46.5	0.0022	0.0024	0.0025	0.0027
47.0	0.0021	0.0023	0.0024	0.0026
47.5	0.0020	0.0022	0.0023	0.0025
48.0	0.0019	0.0021	0.0022	0.0024
48.5	0.0019	0.0020	0.0021	0.0023
49.0	0.0018	0.0019	0.0021	0.0022
49.5	0.0017	0.0018	0.0020	0.0021
50.0	0.0017	0.0018	0.0019	0.0020
50.5	0.0016	0.0017	0.0018	0.0019
51.0	0.0015	0.0016	0.0018	0.0019
51.5	0.0015	0.0016	0.0017	0.0018
52.0	0.0014	0.0015	0.0016	0.0017
52.5	0.0013	0.0015	0.0016	0.0017
53.0	0.0013	0.0014	0.0015	0.0016
53.5	0.0012	0.0013	0.0014	0.0015
54.0	0.0012	0.0013	0.0014	0.0015
54.5	0.0011	0.0012	0.0013	0.0014
55.0	0.0011	0.0012	0.0013	0.0014
55.5	0.0011	0.0011	0.0012	0.0013
56.0	0.0010	0.0011	0.0012	0.0013
56.5	0.0010	0.0011	0.0011	0.0012
57.0	0.0009	0.0010	0.0011	0.0012
57.5	0.0009	0.0010	0.0011	0.0011
58.0	0.0009	0.0009	0.0010	0.0011
58.5	0.0008	0.0009	0.0010	0.0010
59.0	0.0008	0.0009	0.0009	0.0010
59.5	0.0008	0.0008	0.0009	0.0010
60.0	0.0007	0.0008	0.0009	0.0009

銅イオン滴定法

銅イオン電極は、EDTA でおこなう銅イオンサンプルの滴定 に使える非常に高感度の当量点検知器です。丁寧に作業を 行った場合、滴定精度は、サンプルの総銅イオン濃度の ± 0.1% となっています。

EDTA は、銅イオン以外の陽イオンとも錯体を形成します。EDTA との錯体が高 pH でのみ安定するアルカリ土類およびその他の干渉イオンは、低 pH で銅イオンの滴定を行うことによって排除できます。多くの場合、他の干渉物質は、サンプルの pH を適切に設定し、サンプルにマスキング剤を加えることによって排除できます。これらの手法の総合リストについては、L. Meites 著『Handbook of Analytical Chemistry』(McGraw Hill Book Co. 編集、New York、(第1版))pp. 3-76、3-225 に記載されています。

銅イオン滴定法の準備

- 「電極の準備」の節に記載の通りに電極を準備します。
- 2. 電極を滴定装置の mV センサ入力部に接続します。
- 3. 1 mol/L の EDTA 原液を調製します。 試薬グレードの No_4 EDTA 38.0 グラムを 100 mL 容量フラスコに入れ、約 75 mL の蒸留 水で溶かし、さらにマークの位置まで希釈します。
- 1 mol/L の EDTA 原液を希釈して、サンプルの 10 ~ 20 倍の 濃度の EDTA 滴定剤を調製します。 当量点を明らかにするため には、サンプル濃度の総銅イオン濃度が、少なくとも 10⁻³ mol/ L以上あることが必要です。

銅イオン滴定手順

- 1. 50 mL のサンプルを 150 mL ビーカーに注ぎます。サンプルに 電極を浸し、溶液を十分に攪拌します。
- Tx Excellence および G20 Compact 滴定装置に設定されている標準 EQP (当量点) 滴定法テンプレートを使用して、当量点滴定を行います。滴定の EQP とは、スロープが最も大きくなる点 (変曲点) です。図 3 を参照。
- 3. 希釈前のサンプルの濃度を次の式で計算します:

R (mol/L) = Q*C/m

Q = VEQ*c*t

VEQ= 等量点 (EQP) での容量

c = EDTA 滴定剤の公称濃度

t = EDTA 滴定剤の滴定量

C = 1/z、z=1 (EDTA 滴定剤の当量数)

m = サンプルの容量

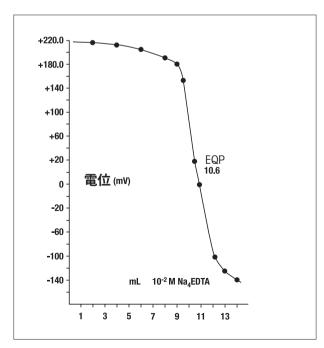


図 ${f 3}$ – $10^{\text{-}3}$ mol/L の ${
m CuCl_2}$ に $10^{\text{-}2}$ mol/L ${
m Na_4}{
m EDTA}$ を加えておこなう典型的な滴定

指示薬滴定法

銅イオン電極は、銅イオン以外の金属イオンの滴定でも当量点の 検知に使用できます。サンプルに少量の銅イオン錯体を加え、錯滴 定を行います。滴定剤の当量点容量から、サンプル濃度を計算しま す。指示薬滴定法で特定できる検知するイオンの最低濃度 は、10.4 mol/L 以上になります。

表 6 に、いくつかの滴定できるイオンの種類と、使用する適切な 試薬と滴定剤を示してあります。

- 1. **表 6** を使用して、銅イオン標準液とモル比で銅イオンと等しい 錯化剤を含んだ10⁻² mol/L の試薬を調製し、適宜に希釈しま す。
- 2. 濃度がサンプルの約 10 倍の滴定剤を調製します。
- 3. 電極を $50 \sim 100 \, \text{mL}$ のサンプルに浸します。サンプルの容量を記録します。サンプルに $1 \, \text{mL}$ の試薬 (銅イオンの錯体)を加えます。校正済みの $p \, \text{H}$ ガラス電極を取り付けた $p \, \text{Tx}$ Excellence または $p \, \text{G20}$ Compact 滴定装置を使用して終点滴定をおこない、サンプルを $p \, \text{H}$ 9 に調整します。
- 4. Tx Excellence および G20 Compact 滴定装置に設定されている標準 EQP (当量点) 滴定法テンプレートを使用して、当量点滴定を行います。滴定の EQP とは、スロープが最も大きくなる点 (変曲点) です。 図 4 を参照。
- 5. サンプルの濃度を次の式で計算します:

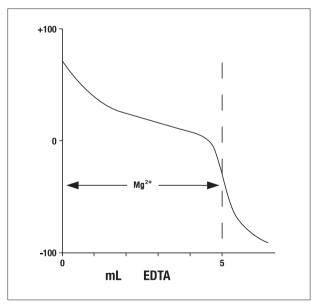
R (mol/L) = Q*C/m

Q = VEQ*c*TITER

VEQ = EQP での容量

c = EDTA 滴定剤の公称濃度

TITER = EDTA 滴定剤の滴定量


C = 1/z, z=1 (EDTA 滴定剤の当量数)

m = サンプルの容量

表 6 - 指示薬滴定法の試薬と滴定剤

固体メンブラン銅イオン電極を使用したキレート指示薬滴定法 Ross、J.W.、および Frant、mol/L.S.; Anal. Chem.、1969、41(13) al. Chem., 1969, 41(13), 1900.

種類	試薬 (10 ⁻² mol/L)	滴定剤
バリウム	CuCDTA	CDTA
カルシウム	CuEGTA	EGTA
コバルト (2+)	CuEDTA	EDTA
マグネシウム	CuEDTA	EDTA
マンガン (2+)	CuEDTA	EDTA
ニッケル	CuTEPA	TEPA
ストロンチウム	CuEDTA	EDTA
バナジウム	CuEDTA	EDTA
亜鉛	CuTEPA	TEPA

図 4 – 100 mL の 10⁻³ mol/L Ca²⁺ の滴定 (サンプルに CuEDTA 指示薬を添加済)

5. 電極の特性

電極の反応

片対数グラフ用紙の比例軸(縦)にmV値、対数軸(横)に標準液の 濃度を取った校正曲線では、電極は10倍の濃度変化につき約 25 ~30 mV のスロープの直線を描きます。

電極の反応 (測定される電位の値が99%安定するまで) に要する時間は、高濃度溶液での数秒から検知限界付近での数分まで様々です。

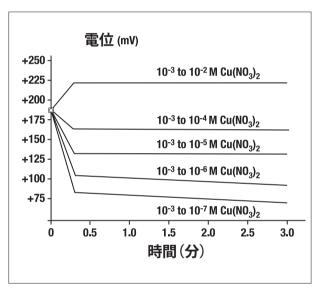


図 5 - Cu(NO₃)。 濃度に対する典型的な電極の反応

再現性

再現性は、温度変化、ドリフト、ノイズなどの要因による影響を受けます。電極のスペック測定範囲内では、濃度による再現性への影響はありません。1 時間ごとに校正を行った場合、±4%の直接校正測定法による値の再現性が得られます。

検知限界

中性溶液の場合、測定できる最低銅イオン濃度は、 10^{-8} mol/L $(6 \times 10^{-4}$ mg/L) です。 10^{-5} mol/L (0.6 mg/L) 未満の濃度を測定する場合は、サンプルの汚染や容器への銅イオンの吸着を防ぐように、細心の注意が必要です。

温度依存

電極電位は温度変化の影響を受けるため、サンプルと標準液の温度差は ±1 ℃以内になるようにしてください。濃度 10⁻³ mol/L の場合、温度差1 ℃ ごとに 4 % を超える誤差が生じます。比較電極の絶対電位は、溶解度平衡が温度に依存するため、温度変化に伴って変化します。電極のスロープもネルンストの式の S (スロープ、傾き;41 ページ参照)で示されているように温度ともに変化します。表7 ではそれぞれの温度におけるスロープの理論上の値を示しています。温度が変化した場合は、電極を再校正しなければなりません。

電極は、 $0\sim80$ $^{\circ}$ の間で温度平衡に達していれば使用できます。室温と大幅に異なる温度で使用する場合は、校正標準液とサンプルが同じ温度になるまで測定しないでください。 80 $^{\circ}$ を超える場合は、電極を時々休ませ、測定し続けないようにしてください。

表7-理論的スロープと温度値

温度 (°C)	スロープ (mV)
0	27.1
10	28.1
20	29.1
25	29.6
30	30.1
40	31.1
50	32.1

電極に付属の比較電解液 Dを使用すると、液絡部の拡散電位の発生を最小限に抑え、温度および反応時間に関して最適な条件が得られます。

干渉物質

銅イオン電極の検知部を汚染するため、水銀イオンおよび銀イオンがサンプルに存在してはいけません。これらのイオン濃度が 10-7 mol/L を超える溶液に検知メンブランがさらされた場合、検 知メンブランを研磨する必要があります。鉄イオン (III) は、鉄イオン (III) のレベルが銅イオン濃度の 10分の1を超えている場合のみメンブランに影響を与えます (鉄イオン (III) は、フッ化ナトリウムを加えてサンプルを pH 4 ~ 6 に調整することによりサンプルから除去可能です)。

電極は高濃度の干渉イオンに触れると、不安定になり、反応が遅くなることがあります。この場合は、電極を研磨して電極の性能を回復してください。「電極の保管とメンテナンス」の節を参照してください。

塩化物イオンおよび臭化物イオンが電極の機能に干渉することもあります。干渉の程度は、サンプル中の銅イオンのレベルに対する塩化物イオンまたは臭化物イオンの濃度によって異なり、濃度(モル/リットル)が次に示す条件の場合にのみ生じます:

 $(Cu^{2+})(Cl^{-})_{2} > 1.6 \times 10^{-6}$ $(Cu^{2+})(Br)_{2} > 1.3 \times 10^{-12}$ 図 6 に、電極が正常に機能しない銅イオンと塩化物イオン または臭化物イオンの濃度を示します。電極は、図中の線 より上の領域にあると正常に機能しません。

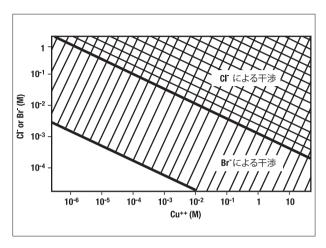


図 6 - 塩化物イオンおよび臭化物イオンによる干渉

pH 依存

不溶性の水酸化銅 Cu(OH)₂ が形成しないように、銅イオン濃度を正しく測定するには pH の範囲を制限する必要があります。**図 7** に、様々な銅イオン濃度の溶液における OH- の影響を示します。網掛け部分で示す pH では、水酸化物イオン濃度が高いため水酸化銅の沈殿を引き起こし、サンプル中の遊離銅イオンのレベルが減少します。図から分かるように、銅イオン濃度が高いほど、水酸化銅が沈殿し始める pH は低くなります。サンプルと標準液の pH を pH 6 未満に調整することにより、水酸化銅の沈殿を防ぐことができます。

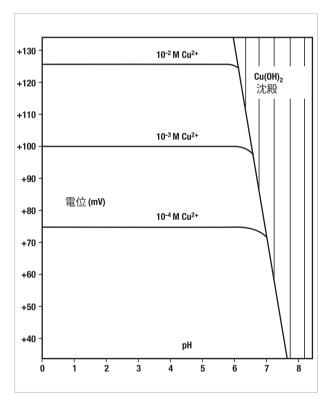


図7-水酸化物イオンによる銅イオンの沈殿

錯体形成

銅イオンは、酢酸塩、アンモニア、有機アミン、クエン酸塩、アミノ酸、EDTA など様々な水溶液中の物質と錯体を形成します。錯体形成の程度は、銅イオンの濃度、錯化剤の濃度、および溶液の pH によって異なります。電極は遊離銅イオンにのみ反応するため、錯体が形成されると測定される濃度の値が低下します。過剰な (50~100倍) 錯化剤が存在する場合は、総銅イオン濃度を既知量添加法により測定できます。

可溶性の銅塩は、硫化物、リン酸塩、水酸化物、およびその他のイオンと結合して沈殿します。沈殿物形成の程度は、銅イオンのレベル、サンプル中の沈殿物形成イオンのレベル、および溶液の pH によって異なってきます。

測定の理論

銅イオン電極は、検知部が電極ステムに直接接続されています。 銅イオンを含む溶液に検知部が接触すると、電極電位が検知膜を はさんで発生します。この電位は溶液中の遊離銅イオンの濃度に よって異なり、デジタル pH/mV メーターまたは イオンメーターで 一定に設定されている比較電極の電位に対して測定されます。溶 液中の銅イオンの濃度に対応する測定電位は、ネルンストの式で 表されます。

 $E = E_0 + S \cdot \log(A)$

E = 測定電位

E。 = 比較電位(一定)

A = 溶液中の銅イオンの活量

S = 電極のスロープ

(濃度が10倍変化するごとに約 28 mV)

S = (2.3 R T) / nF

R および F は定数、T = 温度 (K)、n = イオン電荷

A は、溶液中の遊離銅イオンの活量、すなわち「有効濃度」です。 銅イオンの活量は、遊離銅イオン濃度 C_f と活量係数 γ の積という関係になっています。

$$A = y \cdot C_f$$

銅イオン電極は、pH 電極による水素イオンの活量の測定と同じ原理で銅イオンの活量を測定します。これは、生物に与える影響の研究や銅の化学的特徴の分析と理解に役立ちます。銅イオンの活量を測定するには、銅イオン標準液に活量の値を割り当て、サンプルに対して pH の調整は行いません。推定される硝酸銅標準液の銅イオン活量を次に示します。その他の銅イオン溶液の場合、他の種類のイオンの存在がイオン活量に影響を与えます。

表 8 - 25°C における硝酸銅標準液の濃度と活量の値

濃度 (mol/L)	活量 (mol/L)
10-1	3.2 x 10 ⁻²
5 x 10 ⁻²	9.6 x 10 ⁻³
10-2	5.5 x 10 ⁻³
5 x 10 ⁻³	1.4 x 10 ⁻³
10-3	7.9 x 10 ⁻⁴
10-4	9.2 x 10 ⁻⁵
10-5	10 ⁻⁵

イオン活量係数は変化し、総イオン強度に大きく左右されます。イオン強度は、溶液中に存在するすべてのイオンによって決まり、個々のイオンの濃度とその電荷の2乗を掛け合わせ、これらの値をすべて合計して2で割ることによって求められます。

イオン強度 = 1/2 ∑ (C_iZ_i²)

C_i = イオン i の濃度

Z_i = イオン i の濃度

5 は溶液中の全種類のイオンの合計を表す

銅イオン以外の総イオン強度が高く、検知するイオンすなわち銅イオン濃度に対して変化しない場合は、活量係数は一定で、活量は濃度に直接比例します。銅イオン濃度の変化にかかわらず、銅イオン以外のイオン強度を高くし一定にするために、すべての銅イオン標準液およびサンプルにイオン強度調整剤(ISA)を加えます。銅イオンの場合、ISAとして 5 mol/L の NaNO₃ を使用することをお勧めします。銅イオン測定を妨げる干渉イオンを含んでいなければ、その他の溶液を使用することもできます。

サンプルのイオン強度が高い (0.1 mol/L を超える) 場合は、サンプルと同様の組成とイオン強度 (銅イオンを除く) を持つ標準液を調製してください。

比較電極の条件も考慮する必要があります。電極を溶液につけると、2種類の組成の異なる溶液(比較電解液とサンプル・標準液)が接触するため電位差が発生します。その電位は、2種類の溶液中のイオンの相互拡散によって生じるもので、拡散電位と呼ばれています。これは、イオンの拡散の速度が種類によって異なるため、電荷の拡散が溶液界面で不均等になるのが原因です。したがって、測定を行う際は、この拡散電位が電極を標準液に浸したときとサンプルに浸したときで同じでなければなりません。さもなければ、拡散電位の違いが、測定している特定イオンすなわち銅イオンの測定電位の誤差として現れます。

測定時に注意しなければならないものには、比較電解液の組成があります。とくに、電解液中の陽イオンと陰イオンができるだけ同じ速さでサンプルに拡散するものを選びます。それにより、正電荷と負電荷の移動による拡散電位の発生が最小限に抑えられるためです。perfectION™ 用比較電解液は、比較電極に求められる条件を満たすよう特別に調製されています。

6. トラブルシューティング

下記の順番に従って問題を特定してください。円滑にトラブルシューティングを行うために、測定用機器と工程の確認は、メーター、電極、サンプル、および測定方法の4つの部分に分けられています。

メーター/滴定装置

メーター/滴定装置は、測定エラーの原因として最も簡単に 判別できる部分です。メーター/滴定装置の取扱説明書の指示に従ってください。

電極

- 1. 電極を蒸留水で十分に洗浄します。
- 2. 「電極の機能チェック (スロープ)」の節の手順に従って、電極の機能を確認します。
- 3. 電極が本来のスロープで反応しない場合は、「測定のヒント」の 節を参照してください。「電極の保管とメンテナンス」の節の記 載の通りに、電極を十分に洗浄します。電極内の電解液を排出 し、新しい電解液で満たします。
- 4. 「**電極の機能チェック** (スロープ)」の節の手順を繰り返します。
- 5. ここで電極が正常に正しいスロープで反応しても、測定時の問題が解決されない場合は、サンプルに干渉物質または錯化剤が含まれているか、測定方法の選定が不適切である可能性があります。
- 6. 不具合のある電極として交換する前に、この取扱説明書を見直し、電極を十分に洗浄してください。電極を正しく準備し、適切な電解液、ISA、および標準液を使用し、サンプルに合った正しい測定方法を選定して、「トラブルシューティング チェックリスト」の節を確認してください。

サンプル/アプリケーション

測定結果は、標準液の質によって大きく左右されます。問題が発生 した場合は、必ず新しい標準液を調製してください。こうすること で、何時間もかけて不必要なトラブルシューティングを行わずに済 む場合があります。標準液が原因となる理由として、汚染された標 準液、不正確な希釈、質の悪い蒸留水、濃度の計算間違いなどが 考えられます。

標準液を調製する最善の方法は段階希釈です。「段階希釈」の節を参照してください。電極およびメーターが標準液では機能しても、実際のサンプルで機能しないことがあります。このような場合は、サンプルの組成(干渉物質の存在とそれによる測定への影響)、または温度依存による影響がないか確認してください。「サンプルの条件」、「温度依存」、「干渉物質」、および「pH 依存」の節を参照してください。

測定方法

問題が解決されない場合は、測定方法を見直してください。校正 および測定の節を見直し、適切な方法を選定しているか確認して ください。また、測定する銅イオンの濃度が電極の検知できる測 定範囲内にあることを確認してください。

測定方法が実際のサンプルの条件に適しているか確認してください。直接測定法が必ずしも最善の方法とは限りません。

大量の錯化剤が存在する場合は、**既知量添加法**が最善です。低濃度のサンプルを測定する場合は、「低濃度校正法」の節の手順に従ってください。

トラブルシューティング チェックリスト

- 比較電極電解液が十分でない 電極の注入口まで新しい電解液で満たしてください。詳細については、「電極の準備」の節を参照してください。
- 間違った比較電解液を使用している 「電極の準備」の節を 参照して、正しい比較電解液が使用されていることを確認して ください。
- 電極の液絡部が乾いている 電極キャップを押し下げて、電極から電解液数滴を流出させてください。
- 電極が詰まっているか汚れている 「電極の保管とメンテナンス」の節の洗浄の手順を参照してください。
- メンブランが汚れているか傷ついている 「電極の保管とメンテナンス」の節の洗浄の手順を参照してください。
- 標準液が汚染されているか、正しく調製されていない 新しい標準液を調製してください。「測定のヒント」および「測定分析方法」の節を参照してください。
- ISA が使用されていないか、間違った ISA を使用している ISA はすべての標準液およびサンプルに加える必要があります。ISA については、「必要な器具・試薬」の節を参照してください。
- サンプルと標準液の温度が異なる すべてを同じ温度にしてください。
- メンブランに気泡が付着している 電極を溶液に再度浸して 気泡を取り除いてください。
- 電極がメーター/滴定装置に正しく接続されていない 電極と メーター/滴定装置に接続しているケーブルを抜き、接続しなお してください。
- メーター/滴定装置またはスターラーが正しく接地されていない - メーター/滴定装置およびスターラーが正しく接地されている か確認してください。
- 静電気が存在する 洗剤で湿らせた布でメーター/滴定装置の プラスチック部品を拭いてください。
- メーター/滴定装置に不具合がある メーター/滴定装置の機能を確認してください。メーター/滴定装置の取扱説明書を参照してください。

7. 注文情報

品名	品番
銅イオン複合電極	
(perfectION™ comb Cu²+ 用 BNC コネクタ付き):	51344712
(perfectION™ comb Cu²+ 用 Lemo コネクタ付き):	51344812
比較電解液 D:	51344753
銅イオン標準液 1000 mg/L:	51344774
固体メンブラン用 イオン強度調整剤 ISA:	51344760

8. 電極の仕様

メンブラン (膜) の種類

固体

濃度範囲

 $10^{-8} \sim 0.1 \text{ mol/L} (6.4 \text{ x } 10\text{-}4 \sim 6354 \text{ mg/L})$

pH 範囲

2~12

温度範囲

 $0 \sim 80 \,^{\circ} \, \mathrm{C}$

電極抵抗

1 MΩ 未満

再現性

± 4%

サンプルの最少量

50 mL ビーカーに 5 mL

寸法

シャフト長: 110 mm シャフト径: 13 mm キャップ直径: 16 mm ケーブル長: 1.2 m

^{*} 仕様は予告なく変更されることがあります。

www.mt.com/jp

For more information

メトラー・トレド株式会社 科学機器営業本部

東京 TEL:03-5815-5515 FAX:03-5815-5525 大阪 TEL:06-6266-1187 FAX:06-6266-1379

E-mail:sales.admin.jp@mt.com

東京本社 〒110-0008 東京都台東区池之端2-9-7 池之端日殖ビル6F 大阪支社 〒541-0053 大阪市中央区本町2-1-6 堺筋本町センタービル15F

©02/2011 Mettler-Toledo AG Printed in Switzerland 1001/2.12 ME-51710844